Skip to main content
Log in

Epidemiology of Extended-Spectrum β-Lactamase-Producing Escherichia coli in the Human-Livestock Environment

  • Bacteriology (N Borel, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

The detection of extended-spectrum β-lactamase (ESBL) producers in the fecal flora of healthy food-producing animals has increased in recent years. This is mainly attributed to the intense use of antibiotics in this sector. There is growing concern regarding the risk of spread of such bacteria, especially Escherichia coli and Salmonella, to humans and to the environment. The occurrence of ESBL producers in the major groups of livestock, i.e., poultry, pigs, cattle, and sheep is highlighted and discussed with regard to data that provide evidence for transmission of their resistance traits from livestock to humans and to farm environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. World Health Organization WHO. Antimicrobial resistance: global report on surveillance 2014. Available from http://www.who.int/drugresistance/documents/surveillancereport/en.

  2. International Monetary Fund. The fight for global health. FINANCE and DEVELOPMENT 2014. Available at http://www.imf.org/external/pubs/ft/fandd/2014/12/pdf/fd1214.pdf.

  3. Centers for Disease Control and Prevention CDC. Antibiotic resistance threats in the United States, 2013. Available at http://www.cdc.gov/drugresistance/threat-report-2013/.

  4. President’s Council of Advisors on Science and Technology. Antibiotic resistance working group. Report to the president on combating antibiotic resistance. 2014. Available at www.whitehouse.gov/ostp/pcast.

  5. Public Health Agency of Canada. Antimicrobial resistance and use in Canada: a federal framework for action. 2014. Available at http://healthycanadians.gc.ca/drugs-products-medicaments-produits/antibiotic-resistance-antibiotique/antimicrobial-framework-cadre-antimicrobiens-eng.php.

  6. HM Government. UK 5 year antimicrobial resistance (AMR) strategy 2013–2018. Annual progress report and implementation plan, 2014. Available at www.gov.uk/government/publications.

  7. Federal Government of Germany. Deutsche Antibiotika-Resistenzstrategie [German antibiotic resistance strategy] DART 2020. Antibiotika-Resistenzen bekämpfen zum Wohl von Mensch und Tier [Combating antibiotic resistance for the benefit of human and animal health]. 2015. Available at http://www.bmel.de/SharedDocs/Downloads/Broschueren/DART2020.pdf?__blob=publicationFile.

  8. Australian Government Department of Health and Department of Agriculture. National antimicrobial resistance strategy 2015–2019. Responding to the threat of antimicrobial resistance. 2015. Online ISBN: 978-1-76007-192-9.

  9. World Health Organization WHO. Critically important antimicrobials for human medicine —3rd rev. 2011. Available at http://www.who.int/foodborne_disease/resistance/agisar/en/.

  10. Carattoli A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect. 2008;14:117–23.

    Article  PubMed  Google Scholar 

  11. Matagne A, Lamotte-Brasseur J, Frère JM. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J. 1998;330:581–98.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991;276:269–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54:969–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:657–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Perilli M, Dell’Amico E, Segatore B, de Massis MR, Bianchi C, Luzzaro F, et al. Molecular characterization of extended-spectrum beta-lactamases produced by nosocomial isolates of Enterobacteriaceae from an Italian nationwide survey. J Clin Microbiol. 2002;40:611–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Jacoby GA, Luisa Silvia Munoz-Price MD. The new β-lactamases. N Engl J Med. 2005;352:380–91.

    Article  PubMed  CAS  Google Scholar 

  17. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol. 2012;3:110.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist. 2011;17:83–97.

    Article  PubMed  CAS  Google Scholar 

  19. Bush K. Proliferation and significance of clinically relevant β-lactamases. Ann N Y Acad Sci. 2013;1277:84–90.

    Article  PubMed  CAS  Google Scholar 

  20. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:2227–38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Meth. 2005;63:219–28.

    Article  CAS  Google Scholar 

  22. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol. 2007;73:1976–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Van Melderen L, De Saavedra Bast M. Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet. 2009;5:e1000437.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science. 2003;301:1496–9.

    Article  PubMed  CAS  Google Scholar 

  25. Mnif B, Harhour H, Jdidi J, Mahjoubi F, Genel N, Arlet G, et al. Molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli in Tunisia and characterization of their virulence factors and plasmid addiction systems. BMC Microbiol. 2013;13:147.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wang J, Stephan R, Zurfluh K, Hächler H, Fanning S. Characterization of the genetic environment of bla ESBL genes, integrons and toxin-antitoxin systems identified on large transferrable plasmids in multi-drug resistant Escherichia coli. Front Microbiol. 2015;5:716.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:4555–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60:1136–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Singer RS. Urinary tract infections attributed to diverse ExPEC strains in food animals: evidence and data gaps. Front Microbiol. 2015;6:28.

    PubMed Central  PubMed  Google Scholar 

  30. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli o25b-st131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66:1–14.

    Article  PubMed  CAS  Google Scholar 

  31. D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. 2013;303:305–17.

    Article  PubMed  CAS  Google Scholar 

  32. Van der Bij AK, Peirano G, Pitondo-Silva A, Pitout JD. The presence of genes encoding for different virulence factors in clonally related Escherichia coli that produce CTX-Ms. Diagn Microbiol Infect Dis. 2012;72:297–302.

    Article  PubMed  CAS  Google Scholar 

  33. Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev. 2013;26:744–58.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Geser N, Stephan R, Korczak BM, Beutin L, Hächler H. Molecular identification of extended-spectrum-β-lactamase genes from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob Agents Chemother. 2012;56:1609–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Nüesch-Inderbinen MT, Abgottspon H, Zurfluh K, Nüesch HJ, Stephan R, Hächler H. Cross-sectional study on fecal carriage of Enterobacteriaceae with resistance to extended-spectrum cephalosporins in primary care patients. Microb Drug Resist. 2013;19:362–9.

    Article  PubMed  CAS  Google Scholar 

  36. Nicolas-Chanoine MH, Jarlier V, Robert J, Arlet G, Drieux L, Leflon-Guibout V, et al. Patient’s origin and lifestyle associated with CTX-M-producing Escherichia coli: a case-control-control study. PLoS One. 2012;7(1):e30498.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Leistner R, Meyer E, Gastmeier P, Pfeifer Y, Eller C, Dem P, et al. Risk factors associated with the community-acquired colonization of extended-spectrum beta-lactamase (ESBL) positive Escherichia coli. An exploratory case–control study. PLoS One. 2013;8(9):e74323.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Wickramasinghe NH, Xu L, Eustace A, Shabir S, Saluja T, Hawkey PM. High community faecal carriage rates of CTX-M ESBL-producing Escherichia coli in a specific population group in Birmingham. UK J Antimicrob Chemother. 2012;67:1108–13.

    Article  PubMed  CAS  Google Scholar 

  39. Kantele A, Lääveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, et al. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin Infect Dis 2015. doi:10.1093/cid/ciu957.

  40. Tängdén T, Cars O, Melhus A, Löwdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother. 2010;54:3564–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, et al. National ESBL surveillance group. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect. 2011;17:873–80.

    Article  PubMed  CAS  Google Scholar 

  42. Abgottspon H, Stephan R, Bagutti C, Brodmann P, Hächler H, Zurfluh K. Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli isolated from Swiss and imported poultry meat. J Food Prot. 2014;77:112–5.

    Article  PubMed  CAS  Google Scholar 

  43. Stewardson AJ, Renzi G, Maury N, Vaudaux C, Brossier C, Fritsch E, et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae in hospital food: a risk assessment. Infect Control Hosp Epidemiol. 2014;35:375–83.

    Article  PubMed  Google Scholar 

  44. Cohen Stuart J, van den Munckhof T, Voets G, Scharringa J, Fluit A, Hall ML. Comparison of ESBL contamination in organic and conventional retail chicken meat. Int J Food Microbiol. 2012;154:212–4.

    Article  PubMed  Google Scholar 

  45. European Food Safety Authority EFSA. Scientific opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J 2011. doi:10.2903/j.efsa.2011.2322.

  46. Zurfluh K, Wang J, Klumpp J, Nüesch-Inderbinen M, Fanning S, Stephan R. Vertical transmission of highly similar bla CTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid. Front Microbiol 2014. doi:10.3389/fmicb.2014.00519.

  47. Dierikx CM, van der Goot JA, Smith HE, Kant A, Mevius DJ. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS One. 2013;8(11):e79005.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Laube H, Friese A, von Salviati C, Guerra B, Käsbohrer A, Kreienbrock L, et al. Longitudinal monitoring of extended-spectrum-beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Appl Environ Microbiol. 2013;79:4815–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Bortolaia V, Guardabassi L, Bisgaard M, Larsen J, Bojesen AM. Escherichia coli producing CTX-M-1,-2, and-9 group β-lactamases in organic chicken egg production. Antimicrob Agents Chemother. 2010;54:3527–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Dierikx C, van der Goot J, Fabri T, van Essen-Zandbergen A, Smith H, Mevius D. Extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J Antimicrob Chemother. 2013;68(1):60–7. Demonstrate that broiler farmers are at higher risk than the general population of fecal carriage of ESBL producing E. coli.

    Article  PubMed  CAS  Google Scholar 

  51. Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, et al. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis. 2011;17:1216–22.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Huijbers PM, Graat EA, Haenen AP, van Santen MG, van Essen-Zandbergen A, Mevius DJ, et al. Extended-spectrum and AmpC β-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: prevalence, risk factors and molecular characteristics. J Antimicrob Chemother. 2014;69:2669–75. Provide evidence for clonal transmission of ESBL-producers from broilers to humans and from humans to humans on broiler farms.

    Article  PubMed  CAS  Google Scholar 

  53. Huijbers PMC, Kraker DM, Graat EAM, Hoek A, Santen MG, Jong DM, et al. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in humans living in municipalities with high and low broiler density. Clin Microbiol Inf. 2013;19:256–9.

    Article  Google Scholar 

  54. Laube H, Friese A, von Salviati C, Guerra B, Rösler U. Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas. Vet Microbiol. 2014;172:519–27. Systematic investigation that shows that ESBL-producers are transmitted from broiler farms to the environment via stable airing systems and contaminated slurry used for the fertilization of fields.

    Article  PubMed  CAS  Google Scholar 

  55. Blaak H, van Hoek AH, Hamidjaja RA, van der Plaats RQ, Kerkhof-de Heer L, de Roda Husman AM, et al. Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS One. 2015;10(8):e0135402.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Solà-Ginés M, González-López JJ, Cameron-Veas K, Piedra-Carrasco N, Cerdà-Cuéllar M, Migura-Garcia L. Houseflies (Musca domestica) as vectors for extended-spectrum β-lactamase-producing Escherichia coli on Spanish broiler farms. Appl Environ Microbiol. 2015;81:3604–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Maluta RP, Logue CM, Casas MR, Meng T, Guastalli EA, Rojas TC, et al. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS One. 2014;9(8):e105016.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. dos Santos L, Moura RA, Ramires PA, de Pestana Castro A, Lincopan N. Current status of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in animals. In: Méndez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz: Formatex Research Center; 2013. p. 1600–7.

    Google Scholar 

  59. Hammerum AM, Jakobsen L, Olsen SS, Agersø Y. Characterization of CTX-M-14-and CTX-M-15-producing Escherichia coli of porcine origin. J Antimicrob Chemother. 2012;67:2047–9.

    Article  PubMed  CAS  Google Scholar 

  60. Rodrigues C, Machado E, Peixe L, Novais A. IncI1/ST3 and IncN/ST1 plasmids drive the spread of bla TEM-52 and bla CTX-M-1/-32 in diverse Escherichia coli clones from different piggeries. J Antimicrob Chemother. 2013;68:2245–8.

    PubMed  CAS  Google Scholar 

  61. Hansen KH, Damborg P, Andreasen M, Nielsen SS, Guardabassi L. Carriage and fecal counts of CTX-M-producing Escherichia coli in pigs: a longitudinal study. Appl Environ Microbiol. 2013;79:794–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Hammerum AM, Larsen J, Andersen VD, Lester CH, Skytte TSS, Hansen F, et al. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third-or fourth-generation cephalosporins. J Antimicrob Chemother. 2014;69:2650–7. Provides evidence for transfer of ESBL-producing E. coli and plasmids between pigs and pig farmers.

    Article  PubMed  CAS  Google Scholar 

  63. von Salviati C, Laube H, Guerra B, Roesler U, Friese A. Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet Microbiol. 2015;175:77–84. Identification of airing systems, slurry and digestate from biogas plants as emission sources for ESBL-producing E. coli from pig farms to their surroundings.

    Article  CAS  Google Scholar 

  64. van Rennings L, von Münchhausen C, Ottilie H, Hartmann M, Merle R, Honscha W, et al. Cross-sectional study on antibiotic usage in pigs in Germany. PLoS One. 2015;10(3):e0119114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Fleury MA, Mourand G, Jouy E, Touzain F, Le Devendec L, de Boisseson C, et al. Impact of ceftiofur injection on gut microbiota and Escherichia coli resistance in pigs. Antimicrob Agents Chemother. 2015;59:5171–80.

    Article  PubMed  CAS  Google Scholar 

  66. Vasseur MV, Laurentie M, Rolland J-G, Perrin-Guyomard A, Henri J, Ferran AA, et al. Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora. Antimicrob Agents Chemother. 2014;58:1744–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Shiraki Y, Shibata N, Doi Y, Arakawa Y. Escherichia coli producing CTX-M-2 beta-lactamase in cattle. Japan Emerg Infect Dis. 2004;10:69–75.

    Article  PubMed  CAS  Google Scholar 

  68. Wittum TE, Mollenkopf DF, Daniels JB, Parkinson AE, Mathews JL, Fry PR, et al. CTX-M-type extended-spectrum β-lactamases present in Escherichia coli from the feces of cattle in Ohio. United States Foodborne Pathog Dis. 2010;7:1575–9.

    Article  PubMed  CAS  Google Scholar 

  69. Hartmann A, Locatelli A, Amoureux L, Depret G, Jolivet C, Gueneau E, et al. Occurrence of CTX-M producing Escherichia coli in soils, cattle, and farm environment in France (Burgundy region). Front Microbiol 2012. doi:10.3389/fmicb.2012.00083.

  70. Geser N, Stephan R, Hächler H. Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet Res 2012. doi:10.1186/1746-6148-8-21.

  71. Schmid A, Hörmansdorfer S, Messelhäusser U, Käsbohrer A, Sauter-Louis C, Mansfeld R. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl Environ Microbiol. 2013;79:3027–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Dahmen S, Métayer V, Gay E, Madec JY, Haenni M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet Microbiol. 2013;162:793–9.

    Article  PubMed  CAS  Google Scholar 

  73. Cottell JL, Kanwar N, Castillo-Courtade L, Chalmers G, Scott HM, Norby B, et al. bla CTX-M-32 on an IncN plasmid in Escherichia coli from beef cattle in the United States. Antimicrob Agents Chemother. 2013;57:1096–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Hordijk J, Mevius DJ, Kant A, Bos ME, Graveland H, Bosman AB, et al. Within-farm dynamics of ESBL/AmpC-producing Escherichia coli in veal calves: a longitudinal approach. J Antimicrob Chemother. 2013;68:2468–76.

    Article  PubMed  CAS  Google Scholar 

  75. Snow LC, Wearing H, Stephenson B, Teale CJ, Coldham NG. Investigation of the presence of ESBL-producing Escherichia coli in the North Wales and West Midlands areas of the UK in 2007 to 2008 using scanning surveillance. Vet Rec 2011. doi:10.1136/vr.100037.

  76. Ramos S, Igrejas G, Silva N, Jones-Dias D, Capelo-Martinez J-L, Caniça M, et al. First report of CTX-M producing Escherichia coli, including the new ST2526, isolated from beef cattle and sheep in Portugal. Food Control. 2013;3:208–10.

    Article  CAS  Google Scholar 

  77. Ewers C. Extended-spectrum β-lactamase and AmpC β-lactamase- producing bacteria in livestock. In: Sing A, editor. Animals zoonoses—infections affecting humans and animals. Dordrecht: Springer Science and Business Media; 2015. p. 379–406.

    Google Scholar 

  78. Rodríguez I, Barownick W, Helmuth R, Mendoza MC, Rodicio MR, Schroeter A, et al. Extended-spectrum beta-lactamases and AmpC beta-lactamases in ceftiofur-resistant Salmonella enterica isolates from food and livestock obtained in Germany during 2003–07. J Antimicrob Chemother. 2009;64:301–9.

    Article  PubMed  CAS  Google Scholar 

  79. Cloeckaert A, Praud K, Lefevre M, Doublet B, Pardos M, Granier SA, et al. IncI1 plasmid carrying extended-spectrum-beta-lactamase gene bla CTX-M-1 in Salmonella enterica isolates from poultry and humans in France, 2003 to 2008. Antimicrob Agents Chemother. 2010;54:4484–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Wittum TE, Mollenkopf DF, Erdman MM. Detection of Salmonella enterica isolates producing CTX-M cephalosporinase in U.S. livestock populations. Appl Environ Microbiol. 2012;78:7487–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Freire Martín I, AbuOun M, Reichel R, La Ragione RM, Woodward MJ. Sequence analysis of a CTX-M-1 IncI1 plasmid found in Salmonella 4,5,12:I:-, Escherichia coli and Klebsiella pneumoniae on a UK pig farm. J Antimicrob Chemother. 2014;69:2098–101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Stephan.

Ethics declarations

Conflict of Interest

Dr. Nüesch-Inderbinen and Dr. Stephan have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nüesch-Inderbinen, M., Stephan, R. Epidemiology of Extended-Spectrum β-Lactamase-Producing Escherichia coli in the Human-Livestock Environment. Curr Clin Micro Rpt 3, 1–9 (2016). https://doi.org/10.1007/s40588-016-0027-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-016-0027-5

Keywords

Navigation