Skip to main content

Advertisement

Log in

Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers

  • Synthetic Chemicals and Health (A Zota and T James-Todd, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize epidemiological literature published between May 15, 2018, and May 14, 2019, that examines the relationship between exposure to synthetic pesticides and health of agricultural workers.

Recent Findings

Current research suggests that exposure to synthetic pesticides may be associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable population, due to a combination of unique social and cultural risk factors as well as exposure to hazards inherent in agricultural work. Pesticide exposure among agricultural workers has been linked to certain cancers, DNA damage, oxidative stress, neurological disorders, and respiratory, metabolic, and thyroid effects.

Summary

This review describes literature suggesting that agricultural workers exposed to synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent research on respiratory effects is sparse, and more research is warranted regarding DNA damage, oxidative stress, metabolic outcomes, and thyroid effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Food and Agricultural Organization of the United Nations (FAO). FAO Statistical Yearbook. 2012. https://issuu.com/faosyb/docs/fao_statistical_yearbook_2012_issuu/24. Accessed 7/23/2019.

  2. United States Department of Agriculture. Farm Labor. https://www.ers.usda.gov/topics/farm-economy/farm-labor/#size. Accessed 7/15/2019.

  3. National Center for Farmworker Health Inc. Farmworker Health Factsheet. Demographics. 2012. http://www.ncfh.org/uploads/3/8/6/8/38685499/fs-migrant_demographics.pdf.

  4. Durden TE, Hummer RA. Access to healthcare among working-aged Hispanic adults in the United States. Soc Sci Q. 2006;87(5):1319–43. https://doi.org/10.1111/j.1540-6237.2006.00430.x.

    Article  Google Scholar 

  5. Moyce SC, Schenker M. Migrant workers and their occupational health and safety. Annu Rev Public Health. 2018;39:351–65. https://doi.org/10.1146/annurev-publhealth-040617-013714.

    Article  PubMed  Google Scholar 

  6. Casey MM, Thiede Call K, Klingner JM. Are rural residents less likely to obtain recommended preventive healthcare services? Am J Prev Med. 2001;21(3):182–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hu R, Shi L, Lee D, Haile GP. Access to and disparities in care among migrant and seasonal farm workers (MSFWs) at U.S. health centers. J Health Care Poor Underserved. 2016;27(3):1484–502. https://doi.org/10.1353/hpu.2016.0107.

    Article  CAS  PubMed  Google Scholar 

  8. Blair A, Freeman LB. Epidemiologic studies in agricultural populations: observations and future directions. J Agromedicine. 2009;14(2):125–31. https://doi.org/10.1080/10599240902779436.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blair A, Zahm SH. Agricultural exposures and cancer. Environ Health Perspect. 1995;103(Suppl 8):205–8. https://doi.org/10.1289/ehp.95103s8205.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blair A, Zahm SH, Pearce NE, Heineman EF, Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health. 1992;18(4):209–15.

    Article  CAS  PubMed  Google Scholar 

  11. Davis DL, Blair A, Hoel DG. Agricultural exposures and cancer trends in developed countries. Environ Health Perspect. 1993;100:39–44. https://doi.org/10.1289/ehp.9310039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koutros S, Alavanja MC, Lubin JH, Sandler DP, Hoppin JA, Lynch CF, et al. An update of cancer incidence in the Agricultural Health Study. J Occup Environ Med. 2010;52(11):1098–105. https://doi.org/10.1097/JOM.0b013e3181f72b7c.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Merhi M, Raynal H, Cahuzac E, Vinson F, Cravedi JP, Gamet-Payrastre L. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. Cancer causes & control : CCC. 2007;18(10):1209–26. https://doi.org/10.1007/s10552-007-9061-1.

    Article  CAS  PubMed  Google Scholar 

  14. Eriksson M, Hardell L, Carlberg M, Akerman M. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int J Cancer. 2008;123(7):1657–63. https://doi.org/10.1002/ijc.23589.

    Article  CAS  PubMed  Google Scholar 

  15. Nordby KC, Andersen A, Kristensen P. Incidence of lip cancer in the male Norwegian agricultural population. Cancer Causes Control. 2004;15(6):619–26. https://doi.org/10.1023/B:CACO.0000036169.90864.e2.

    Article  CAS  PubMed  Google Scholar 

  16. Lemarchand C, Tual S, Leveque-Morlais N, Perrier S, Belot A, Velten M, et al. Cancer incidence in the AGRICAN cohort study (2005-2011). Cancer Epidemiol. 2017;49:175–85. https://doi.org/10.1016/j.canep.2017.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koutros S, Beane Freeman LE, Lubin JH, Heltshe SL, Andreotti G, Barry KH, et al. Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. Am J Epidemiol. 2013;177(1):59–74. https://doi.org/10.1093/aje/kws225.

    Article  PubMed  Google Scholar 

  18. Alavanja MC, Sandler DP, McMaster SB, Zahm SH, McDonnell CJ, Lynch CF, et al. The Agricultural Health Study. Environ Health Perspect. 1996;104(4):362–9. https://doi.org/10.1289/ehp.96104362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. •• Lerro CC, Koutros S, Andreotti G, Sandler DP, Lynch CF, Louis LM, et al. Cancer incidence in the Agricultural Health Study after 20 years of follow-up. Cancer Causes Control. 2019;30(4):311–22. https://doi.org/10.1007/s10552-019-01140-y.

    Article  PubMed  PubMed Central  Google Scholar 

  20. •• Leon ME, Schinasi LH, Lebailly P, Beane Freeman LE, Nordby KC, Ferro G, et al. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol. 2019. https://doi.org/10.1093/ije/dyz017.

    Article  PubMed  PubMed Central  Google Scholar 

  21. •• Andreotti G, Koutros S, Hofmann JN, Sandler DP, Lubin JH, Lynch CF, et al. Glyphosate use and cancer incidence in the Agricultural Health Study. J Natl Cancer Inst. 2018;110(5):509–16. https://doi.org/10.1093/jnci/djx233.

    Article  PubMed  Google Scholar 

  22. •• Lerro CC, Andreotti G, Koutros S, Lee WJ, Hofmann JN, Sandler DP, et al. Alachlor use and cancer incidence in the Agricultural Health Study: an updated analysis. J Natl Cancer Inst. 2018;110(9):950–8. https://doi.org/10.1093/jnci/djy005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Boulanger M, Tual S, Lemarchand C, Guizard AV, Delafosse P, Marcotullio E, et al. Lung cancer risk and occupational exposures in crop farming: results from the AGRIculture and CANcer (AGRICAN) cohort. Occup Environ Med. 2018;75(11):776–85. https://doi.org/10.1136/oemed-2017-104976.

    Article  PubMed  Google Scholar 

  24. •• Piel C, Pouchieu C, Migault L, Beziat B, Boulanger M, Bureau M, et al. Increased risk of central nervous system tumours with carbamate insecticide use in the prospective cohort AGRICAN. Int J Epidemiol. 2018. https://doi.org/10.1093/ije/dyy246.

    Article  Google Scholar 

  25. Leveque-Morlais N, Tual S, Clin B, Adjemian A, Baldi I, Lebailly P. The AGRIculture and CANcer (AGRICAN) cohort study: enrollment and causes of death for the 2005-2009 period. Int Arch Occup Environ Health. 2015;88(1):61–73. https://doi.org/10.1007/s00420-014-0933-x.

    Article  PubMed  Google Scholar 

  26. Kristensen P, Andersen A, Irgens LM, Laake P, Bye AS. Incidence and risk factors of cancer among men and women in Norwegian agriculture. Scand J Work Environ Health. 1996;22(1):14–26.

    Article  CAS  PubMed  Google Scholar 

  27. Sheppard L, Shaffer RM. Re: glyphosate use and cancer incidence in the Agricultural Health Study. J Natl Cancer Inst. 2018;111(2):214–5. https://doi.org/10.1093/jnci/djy200.

    Article  PubMed Central  Google Scholar 

  28. Acquavella J, Olsen G, Cole P, Ireland B, Kaneene J, Schuman S, et al. Cancer among farmers: a meta-analysis. Ann Epidemiol. 1998;8(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Rana I, Shaffer RM, Taioli E, Sheppard L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: a meta-analysis and supporting evidence. Mutat Res. 2019;781:186–206. https://doi.org/10.1016/j.mrrev.2019.02.001.

    Article  CAS  PubMed Central  Google Scholar 

  30. Phillips DH, Arlt VM. Genotoxicity: damage to DNA and its consequences. Exs. 2009;99:87–110.

    CAS  PubMed  Google Scholar 

  31. Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res. 2003;543(3):251–72. https://doi.org/10.1016/s1383-5742(03)00015-2.

    Article  CAS  PubMed  Google Scholar 

  32. Møller P. The comet assay: ready for 30 more years. Mutagenesis. 2018;33(1):1–7.

    Article  PubMed  Google Scholar 

  33. Fenech M. The micronucleus assay determination of chromosomal level DNA damage. In: Martin CC (eds) Environmental genomics. Methods in Molecular Biology (410). Humana Press.

  34. Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J Pharmacol Pharmacother. 2011;2(2):107–11. https://doi.org/10.4103/0976-500X.81903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Collins AR. The comet assay for DNA damage and repair. Mol Biotechnol. 2004;26(3):249–61.

    Article  CAS  PubMed  Google Scholar 

  36. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  37. •• Hutter HP, Khan AW, Lemmerer K, Wallner P, Kundi M, Moshammer H. Cytotoxic and genotoxic effects of pesticide exposure in male coffee farmworkers of the Jarabacoa Region, Dominican Republic. Int J Environ Res Public Health. 2018;15(8). https://doi.org/10.3390/ijerph15081641.

    Article  CAS  PubMed Central  Google Scholar 

  38. •• VFS K, da Silva FR, JDS A, da Silva GF, Picinini J, Dhillon VS, et al. Role of PON1, SOD2, OGG1, XRCC1, and XRCC4 polymorphisms on modulation of DNA damage in workers occupationally exposed to pesticides. Ecotoxicol Environ Saf. 2018;159:164–71. https://doi.org/10.1016/j.ecoenv.2018.04.052.

    Article  CAS  Google Scholar 

  39. •• Hayat K, Afzal M, Aqueel MA, Ali S, Saeed MF, Qureshi AK, et al. Insecticide toxic effects and blood biochemical alterations in occupationally exposed individuals in Punjab, Pakistan. Sci Total Environ. 2019;655:102–11. https://doi.org/10.1016/j.scitotenv.2018.11.175.

    Article  CAS  PubMed  Google Scholar 

  40. •• Saad-Hussein A, Beshir S, Taha MM, Shahy EM, Shaheen W, Abdel-Shafy EA, et al. Early prediction of liver carcinogenicity due to occupational exposure to pesticides. Mutation research Genetic toxicology and environmental mutagenesis. 2019;838:46–53. https://doi.org/10.1016/j.mrgentox.2018.12.004.

    Article  CAS  PubMed  Google Scholar 

  41. •• Dhananjayan V, Ravichandran B, Panjakumar K, Kalaiselvi K, Rajasekar K, Mala A, et al. Assessment of genotoxicity and cholinesterase activity among women workers occupationally exposed to pesticides in tea garden. Mutat Res. 2019;841:1–7. https://doi.org/10.1016/j.mrgentox.2019.03.002.

    Article  CAS  Google Scholar 

  42. •• Intranuovo G, Schiavulli N, Cavone D, Birtolo F, Cocco P, Vimercati L, et al. Assessment of DNA damages in lymphocytes of agricultural workers exposed to pesticides by comet assay in a cross-sectional study. Biomarkers. 2018;23(5):462–73. https://doi.org/10.1080/1354750x.2018.1443513.

    Article  CAS  PubMed  Google Scholar 

  43. •• MDP C, Maurer P, Garcia F, Berro LF, Machado MM, Manfredini V, et al. Occupational exposure to pesticides in family agriculture and the oxidative, biochemical and hematological profile in this agricultural model. Life Sci. 2018;203:177–83. https://doi.org/10.1016/j.lfs.2018.04.038.

    Article  CAS  Google Scholar 

  44. •• Sapbamrer R, Khacha-Ananda S, Sittitoon N, Wunnapuk K, Seesen M, Sidthilaw S, et al. A longitudinal follow-up study of oxidative stress and DNA damage among farmers exposed to pesticide mixtures. Environ Sci Pollut Res Int. 2019;26(13):13185–94. https://doi.org/10.1007/s11356-019-04650-z.

    Article  CAS  PubMed  Google Scholar 

  45. •• Lozano-Paniagua D, Parron T, Alarcon R, Requena M, Gil F, Lopez-Guarnido O, et al. Biomarkers of oxidative stress in blood of workers exposed to non-cholinesterase inhibiting pesticides. Ecotoxicol Environ Saf. 2018;162:121–8. https://doi.org/10.1016/j.ecoenv.2018.06.074.

    Article  CAS  PubMed  Google Scholar 

  46. •• Rohlman DS, Ismail A, Bonner MR, Abdel Rasoul G, Hendy O, Ortega Dickey L, et al. Occupational pesticide exposure and symptoms of attention deficit hyperactivity disorder in adolescent pesticide applicators in Egypt. Neurotoxicology. 2019;74:1–6. https://doi.org/10.1016/j.neuro.2019.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. •• Guytingco A, Thepaksorn P, Neitzel RL. Prevalence of abnormal serum cholinesterase and associated symptoms from pesticide exposure among agricultural workers in the South of Thailand. J Agromedicine. 2018;23(3):270–8. https://doi.org/10.1080/1059924x.2018.1470049.

    Article  PubMed  Google Scholar 

  48. •• Serrano-Medina A, Ugalde-Lizarraga A, Bojorquez-Cuevas MS, Garnica-Ruiz J, Gonzalez-Corral MA, Garcia-Ledezma A, et al. Neuropsychiatric disorders in farmers associated with organophosphorus pesticide exposure in a rural village of Northwest Mexico. Int J Environ Res Public Health. 2019;16(5). https://doi.org/10.3390/ijerph16050689.

    Article  CAS  PubMed Central  Google Scholar 

  49. •• Shrestha S, Kamel F, Umbach DM, LEB F, Koutros S, Alavanja M, et al. High pesticide exposure events and olfactory impairment among U.S. Farmers. Environ Health Perspect, 17005. 2019;127(1). https://doi.org/10.1289/ehp3713.

    Article  PubMed Central  Google Scholar 

  50. •• Buralli RJ, Ribeiro H, Mauad T, Amato-Lourenco LF, Salge JM, Diaz-Quijano FA, et al. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. Int J Environ Res Public Health. 2018;15(6). https://doi.org/10.3390/ijerph15061203.

    Article  PubMed Central  Google Scholar 

  51. •• Park S, Kim SK, Kim JY, Lee K, Choi JR, Chang SJ, et al. Exposure to pesticides and the prevalence of diabetes in a rural population in Korea. Neurotoxicology. 2019;70:12–8. https://doi.org/10.1016/j.neuro.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  52. •• Kongtip P, Nankongnab N, Tipayamongkholgul M, Bunngamchairat A, Yimsabai J, Pataitiemthong A, et al. A cross-sectional investigation of cardiovascular and metabolic biomarkers among conventional and organic farmers in Thailand. Int J Environ Res Public Health. 2018;15(11). https://doi.org/10.3390/ijerph15112590.

    Article  CAS  PubMed Central  Google Scholar 

  53. •• Shrestha S, Parks CG, Goldner WS, Kamel F, Umbach DM, Ward MH, et al. Pesticide use and incident hypothyroidism in pesticide applicators in the Agricultural Health Study. Environ Health Perspect. 2018;126(9):97008. https://doi.org/10.1289/ehp3194.

    Article  CAS  PubMed  Google Scholar 

  54. •• Bernieri T, Rodrigues D, Barbosa IR, Ardenghi PG, Basso da Silva L. Occupational exposure to pesticides and thyroid function in Brazilian soybean farmers. Chemosphere. 2019;218:425–9. https://doi.org/10.1016/j.chemosphere.2018.11.124.

    Article  CAS  PubMed  Google Scholar 

  55. Sailaja N, Chandrasekhar M, Rekhadevi P, Mahboob M, Rahman M, Vuyyuri SB, et al. Genotoxic evaluation of workers employed in pesticide production. Mutat Res. 2006;609:74–80. https://doi.org/10.1016/j.mrgentox.2006.06.022.

    Article  CAS  PubMed  Google Scholar 

  56. Martínez-Valenzuela C, Gómez-Arroyo S, Villalobos-Pietrini R, Waliszewski S, Calderón-Segura ME, Félix-Gastélum R, et al. Genotoxic biomonitoring of agricultural workers exposed to pesticides in the north of Sinaloa State. Mexico Environment International. 2009;35(8):1155–9.

    Article  PubMed  Google Scholar 

  57. Pastor S, Gutierrez S, Creus A, Cebulska-Wasilewska A, Marcos R. Micronuclei in peripheral blood lymphocytes and buccal epithelial cells of polish farmers exposed to pesticides. Mutat Res. 2001;495:147–56. https://doi.org/10.1016/S1383-5718(01)00206-6.

    Article  CAS  PubMed  Google Scholar 

  58. Rodrigues MA. Automation of the in vitro micronucleus assay using the Imagestream® imaging flow cytometer. Cytometry A. 2018;93(7):706–26. https://doi.org/10.1002/cyto.a.23493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, et al. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis. 2015;36(Suppl_1):S61–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bausinger J, Speit G. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay. Mutagenesis. 2016;31(5):567–72.

    Article  CAS  PubMed  Google Scholar 

  61. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142(2):231–55. https://doi.org/10.1038/sj.bjp.0705776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23(14):1144–70. https://doi.org/10.1089/ars.2015.6317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Butterfield DA. Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer's disease brain: mechanisms and consequences. Curr Med Chem. 2003;10(24):2651–9.

    Article  CAS  PubMed  Google Scholar 

  64. Chowienczyk PJ, Brett SE, Gopaul NK, Meeking D, Marchetti M, Russell-Jones DL, et al. Oral treatment with an antioxidant (raxofelast) reduces oxidative stress and improves endothelial function in men with type II diabetes. Diabetologia. 2000;43(8):974–7. https://doi.org/10.1007/s001250051478.

    Article  CAS  PubMed  Google Scholar 

  65. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66(23):3663–73. https://doi.org/10.1007/s00018-009-0099-y.

    Article  CAS  PubMed  Google Scholar 

  66. Muhammad S, Bierhaus A, Schwaninger M. Reactive oxygen species in diabetes-induced vascular damage, stroke, and Alzheimer’s disease. J Alzheimers Dis. 2009;16(4):775–85. https://doi.org/10.3233/jad-2009-0982.

    Article  PubMed  Google Scholar 

  67. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19. https://doi.org/10.1097/WOX.0b013e3182439613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics. 2010;125(6):e1270–e7.

    Article  PubMed  Google Scholar 

  69. Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect. 2011;119(8):1189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ, et al. Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol. 2007;165(12):1397–404.

    Article  PubMed  Google Scholar 

  71. Engel SM, Bradman A, Wolff MS, Rauh VA, Harley KG, Yang JH, et al. Prenatal organophosphorus pesticide exposure and child neurodevelopment at 24 months: an analysis of four birth cohorts. Environ Health Perspect. 2016;124(6):822–30. https://doi.org/10.1289/ehp.1409474.

    Article  CAS  PubMed  Google Scholar 

  72. Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, et al. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect. 2011;119(8):1182–8. https://doi.org/10.1289/ehp.1003183.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Furlong MA, Barr DB, Wolff MS, Engel SM. Prenatal exposure to pyrethroid pesticides and childhood behavior and executive functioning. Neurotoxicology. 2017;62:231–8. https://doi.org/10.1016/j.neuro.2017.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baltazar MT, Dinis-Oliveira RJ, de Lourdes BM, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a mechanistic approach. Toxicol Lett. 2014;230(2):85–103. https://doi.org/10.1016/j.toxlet.2014.01.039.

    Article  CAS  PubMed  Google Scholar 

  75. Freire C, Koifman S. Pesticides, depression and suicide: a systematic review of the epidemiological evidence. Int J Hyg Environ Health. 2013;216(4):445–60. https://doi.org/10.1016/j.ijheh.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  76. Meyer A, Koifman S, Koifman RJ, Moreira JC, de Rezende CJ, Abreu-Villaca Y. Mood disorders hospitalizations, suicide attempts, and suicide mortality among agricultural workers and residents in an area with intensive use of pesticides in Brazil. J Toxicol Environ Health A. 2010;73(13–14):866–77. https://doi.org/10.1080/15287391003744781.

    Article  CAS  PubMed  Google Scholar 

  77. Wesseling C, van Wendel de Joode B, Keifer M, London L, Mergler D, Stallones L. Symptoms of psychological distress and suicidal ideation among banana workers with a history of poisoning by organophosphate or n-methyl carbamate pesticides. Occup Environ Med. 2010;67(11):778–84. https://doi.org/10.1136/oem.2009.047266.

    Article  CAS  PubMed  Google Scholar 

  78. MacFarlane E, Simpson P, Benke G, Sim MR. Suicide in Australian pesticide-exposed workers. Occup Med (Oxford, England). 2011;61(4):259–64. https://doi.org/10.1093/occmed/kqr031.

    Article  CAS  Google Scholar 

  79. Chen H, Shrestha S, Huang X, Jain S, Guo X, Tranah GJ, et al. Olfaction and incident Parkinson disease in US white and black older adults. Neurology. 2017;89(14):1441–7. https://doi.org/10.1212/wnl.0000000000004382.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yaffe K, Freimer D, Chen H, Asao K, Rosso A, Rubin S, et al. Olfaction and risk of dementia in a biracial cohort of older adults. Neurology. 2017;88(5):456–62. https://doi.org/10.1212/wnl.0000000000003558.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Damalas CA, Koutroubas SD. Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics. 2016;4(1):1. https://doi.org/10.3390/toxics4010001.

    Article  PubMed Central  Google Scholar 

  82. Hoppin Jane A, Umbach David M, Long S, London Stephanie J, Henneberger Paul K, Blair A, et al. Pesticides are associated with allergic and non-allergic wheeze among male farmers. Environ Health Perspect. 2017;125(4):535–43. https://doi.org/10.1289/EHP315.

    Article  CAS  PubMed  Google Scholar 

  83. Mamane A, Baldi I, Tessier JF, Raherison C, Bouvier G. Occupational exposure to pesticides and respiratory health. Eur Respir Rev. 2015;24(136):306–19. https://doi.org/10.1183/16000617.00006014.

    Article  PubMed  Google Scholar 

  84. Starling AP, Umbach DM, Kamel F, Long S, Sandler DP, Hoppin JA. Pesticide use and incident diabetes among wives of farmers in the Agricultural Health Study. Occup Environ Med. 2014;71(9):629–35. https://doi.org/10.1136/oemed-2013-101659.

    Article  PubMed  Google Scholar 

  85. Evangelou E, Ntritsos G, Chondrogiorgi M, Kavvoura FK, Hernandez AF, Ntzani EE, et al. Exposure to pesticides and diabetes: a systematic review and meta-analysis. Environ Int. 2016;91:60–8. https://doi.org/10.1016/j.envint.2016.02.013.

    Article  CAS  PubMed  Google Scholar 

  86. Montgomery MP, Kamel F, Saldana TM, Alavanja MC, Sandler DP. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993-2003. Am J Epidemiol. 2008;167(10):1235–46. https://doi.org/10.1093/aje/kwn028.

    Article  CAS  PubMed  Google Scholar 

  87. Campos E, Freire C. Exposure to non-persistent pesticides and thyroid function: a systematic review of epidemiological evidence. Int J Hyg Environ Health. 2016;219(6):481–97. https://doi.org/10.1016/j.ijheh.2016.05.006.

    Article  CAS  PubMed  Google Scholar 

  88. Goldner WS, Sandler DP, Yu F, Hoppin JA, Kamel F, Levan TD. Pesticide use and thyroid disease among women in the Agricultural Health Study. Am J Epidemiol. 2010;171(4):455–64. https://doi.org/10.1093/aje/kwp404.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Goldner WS, Sandler DP, Yu F, Shostrom V, Hoppin JA, Kamel F, et al. Hypothyroidism and pesticide use among male private pesticide applicators in the agricultural health study. J Occup Environ Med. 2013;55(10):1171–8. https://doi.org/10.1097/JOM.0b013e31829b290b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lerro CC, Beane Freeman LE, DellaValle CT, Kibriya MG, Aschebrook-Kilfoy B, Jasmine F, et al. Occupational pesticide exposure and subclinical hypothyroidism among male pesticide applicators. Occup Environ Med. 2018;75(2):79–89. https://doi.org/10.1136/oemed-2017-104431.

    Article  PubMed  Google Scholar 

  91. Brix TH, Kyvik KO, Hegedüs L. Validity of self-reported hyperthyroidism and hypothyroidism: comparison of self-reported questionnaire data with medical record review. Thyroid. 2001;11(8):769–73.

    Article  CAS  PubMed  Google Scholar 

  92. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390(10101):1550–62. https://doi.org/10.1016/s0140-6736(17)30703-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number K01ES028745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Curl.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The content of this manuscript, including all findings and conclusions, is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Synthetic Chemicals and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curl, C.L., Spivak, M., Phinney, R. et al. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr Envir Health Rpt 7, 13–29 (2020). https://doi.org/10.1007/s40572-020-00266-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-020-00266-5

Keywords

Navigation