Skip to main content

Advertisement

Log in

Statistical Approaches for Investigating Periods of Susceptibility in Children’s Environmental Health Research

  • Methods in Environmental Epidemiology (AZ Pollack and NJ Perkins, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Children’s environmental health researchers are increasingly interested in identifying time intervals during which individuals are most susceptible to adverse impacts of environmental exposures. We review recent advances in methods for assessing susceptible periods.

Recent Findings

We identified three general classes of modeling approaches aimed at identifying susceptible periods in children’s environmental health research: multiple informant models, distributed lag models, and Bayesian approaches. Benefits over traditional regression modeling include the ability to formally test period effect differences, to incorporate highly time-resolved exposure data, or to address correlation among exposure periods or exposure mixtures.

Summary

Several statistical approaches exist for investigating periods of susceptibility. Assessment of susceptible periods would be advanced by additional basic biological research, further development of statistical methods to assess susceptibility to complex exposure mixtures, validation studies evaluating model assumptions, replication studies in different populations, and consideration of susceptible periods from before conception to disease onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barr M Jr, DeSesso JM, Lau CS, Osmond C, Ozanne SE, Sadler TW, et al. Workshop to identify critical windows of exposure for children’s health: cardiovascular and endocrine work group summary. Environ Health Perspect. 2000;108(Suppl 3):569–71.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Selevan SG, Kimmel CA, Mendola P. Identifying critical windows of exposure for children’s health. Environ Health Perspect. 2000;108(Suppl 3):451–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. NIEHS (2012) Advancing science, improving health: a plan for environmental health research.

  4. Braun JM, Gray K. Challenges to studying the health effects of early life environmental chemical exposures on children’s health. PLoS Biol. 2017;15(12):e2002800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hamra GB, Buckley JP. Environmental exposure mixtures: questions and methods to address them. Curr Epidemiol Rep. 2018;5(2):160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stafoggia M, Breitner S, Hampel R, Basagana X. Statistical approaches to address multi-pollutant mixtures and multiple exposures: the state of the science. Curr Environ Health Rep. 2017;4(4):481–90.

    Article  PubMed  CAS  Google Scholar 

  7. Larsen WJ. Human embryology. Philadelphia: Churchill Livingstone; 2001.

    Google Scholar 

  8. Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci. 2011;122(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  9. Goderis J, De Leenheer E, Smets K, Van Hoecke H, Keymeulen A, Dhooge I. Hearing loss and congenital CMV infection: a systematic review. Pediatrics. 2014;134(5):972–82.

    Article  PubMed  Google Scholar 

  10. Rawlinson WD, Boppana SB, Fowler KB, Kimberlin DW, Lazzarotto T, Alain S, et al. Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis. 2017;17(6):e177–e88.

    Article  PubMed  Google Scholar 

  11. Diderichsen F, Hallqvist J, Whitehead M. Differential vulnerability and susceptibility: how to make use of recent development in our understanding of mediation and interaction to tackle health inequalities. Int J Epidemiol 2018.

  12. Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, et al. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the Nurses’ Health Study II Cohort. Environ Health Perspect. 2015;123(3):264–70.

    Article  PubMed  CAS  Google Scholar 

  13. Kalkbrenner AE, Windham GC, Serre ML, Akita Y, Wang X, Hoffman K, et al. Particulate matter exposure, prenatal and postnatal windows of susceptibility, and autism spectrum disorders. Epidemiology (Cambridge, Mass). 2015;26(1):30–42.

    Article  Google Scholar 

  14. •• Chen YH, Ferguson KK, Meeker JD, McElrath TF, Mukherjee B. Statistical methods for modeling repeated measures of maternal environmental exposure biomarkers during pregnancy in association with preterm birth. Environ Health. 2015;14:9 Compares several methods for examining susceptible periods with repeated biomarker measures in relation to a time-fixed binary outcome.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sanchez BN, Hu H, Litman HJ, Tellez-Rojo MM. Statistical methods to study timing of vulnerability with sparsely sampled data on environmental toxicants. Environ Health Perspect. 2011;119(3):409–15.

    Article  PubMed  CAS  Google Scholar 

  16. • Wilson A, Chiu YM, Hsu HL, Wright RO, Wright RJ, Coull BA. Potential for Bias when estimating critical windows for air pollution in children’s health. Am J Epidemiol. 2017;186(11):1281–9 Allows for the timing of susceptible periods to depend on a modifier.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med. 2014;33(5):881–99.

    Article  PubMed  Google Scholar 

  18. •• Wilson A, Chiu YM, Hsu HL, Wright RO, Wright RJ, Coull BA. Bayesian distributed lag interaction models to identify perinatal windows of vulnerability in children’s health. Biostatistics (Oxford, England). 2017;18(3):537–52 Demonstrates bias when using trimester-averaged exposure that is not present when using distributed lag models to identify susceptible periods.

    Article  Google Scholar 

  19. • Liu SH, Bobb JF, Lee KH, Gennings C, Claus Henn B, Bellinger D, et al. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures. Biostatistics. 2018;19(3):325–41 Examines periods of susceptibility to exposure mixtures using a highly flexible extension of distributed lag models based on Bayesian Kernel Machine Regression.

    Article  PubMed  Google Scholar 

  20. Warren J, Fuentes M, Herring A, Langlois P. Spatial-temporal modeling of the association between air pollution exposure and preterm birth: identifying critical windows of exposure. Biometrics. 2012;68(4):1157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Horton NJ, Laird NM, Zahner GEP. Use of multiple informant data as a predictor in psychiatric epidemiology. Int J Methods Psychiatr Res. 1999;8(1):6–18.

    Article  Google Scholar 

  22. Litman HJ, Horton NJ, Hernandez B, Laird NM. Incorporating missingness for estimation of marginal regression models with multiple source predictors. Stat Med. 2007;26(5):1055–68.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stacy SL, Papandonatos GD, Calafat AM, Chen A, Yolton K, Lanphear BP, et al. Early life bisphenol a exposure and neurobehavior at 8 years of age: identifying windows of heightened vulnerability. Environ Int. 2017;107:258–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vuong AM, Yolton K, Poston KL, Xie C, Webster GM, Sjodin A, et al. Prenatal and postnatal polybrominated diphenyl ether (PBDE) exposure and measures of inattention and impulsivity in children. Neurotoxicol Teratol. 2017;64:20–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Vuong AM, Yolton K, Xie C, Webster GM, Sjodin A, Braun JM, et al. Childhood polybrominated diphenyl ether (PBDE) exposure and neurobehavior in children at 8 years. Environ Res. 2017;158:677–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Braun JM, Chen A, Hoofnagle A, Papandonatos GD, Jackson-Browne M, Hauser R, et al. Associations of early life urinary triclosan concentrations with maternal, neonatal, and child thyroid hormone levels. Horm Behav. 2018;101:77–84.

    Article  PubMed  CAS  Google Scholar 

  27. Vuong AM, Braun JM, Webster GM, Thomas Zoeller R, Hoofnagle AN, Sjodin A, et al. Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3years. Environ Int. 2018;117:339–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Vuong AM, Braun JM, Yolton K, Wang Z, Xie C, Webster GM, et al. Prenatal and childhood exposure to perfluoroalkyl substances (PFAS) and measures of attention, impulse control, and visual spatial abilities. Environ Int. 2018;119:413–20.

    Article  PubMed  CAS  Google Scholar 

  29. Vuong AM, Yolton K, Poston KL, Xie C, Webster GM, Sjodin A, et al. Childhood polybrominated diphenyl ether (PBDE) exposure and executive function in children in the HOME Study. Int J Hyg Environ Health. 2018;221(1):87–94.

    Article  PubMed  CAS  Google Scholar 

  30. Vuong AM, Yolton K, Wang Z, Xie C, Webster GM, Ye X, et al. Childhood perfluoroalkyl substance exposure and executive function in children at 8years. Environ Int. 2018;119:212–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang H, Yolton K, Webster GM, Ye X, Calafat AM, Dietrich KN, et al. Prenatal and childhood perfluoroalkyl substances exposures and children’s reading skills at ages 5 and 8years. Environ Int. 2018;111:224–31.

    Article  PubMed  CAS  Google Scholar 

  32. Jackson-Browne MS, Papandonatos GD, Chen A, Calafat AM, Yolton K, Lanphear BP, et al. Identifying vulnerable periods of neurotoxicity to triclosan exposure in children. Environ Health Perspect. 2018;126(5):057001.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stacy SL, Papandonatos GD, Calafat AM, Chen A, Yolton K, Lanphear BP, et al. Early life bisphenol a exposure and neurobehavior at 8years of age: identifying windows of heightened vulnerability. Environ Int 2017.

  34. Gasparrini A, Scheipl F, Armstrong B, Kenward MG. A penalized framework for distributed lag non-linear models. Biometrics. 2017.

  35. Chiu YH, Hsu HH, Coull BA, Bellinger DC, Kloog I, Schwartz J, et al. Prenatal particulate air pollution and neurodevelopment in urban children: examining sensitive windows and sex-specific associations. Environ Int. 2016;87:56–65.

    Article  PubMed  CAS  Google Scholar 

  36. Hsu HH, Chiu YH, Coull BA, Kloog I, Schwartz J, Lee A, et al. Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am J Respir Crit Care Med. 2015;192(9):1052–9.

    Article  PubMed  CAS  Google Scholar 

  37. Martens DS, Cox B, Janssen BG, Clemente DBP, Gasparrini A, Vanpoucke C, et al. Prenatal air pollution and newborns’ predisposition to accelerated biological aging. JAMA Pediatr. 2017;171(12):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Raz R, Levine H, Pinto O, Broday DM, Yuval, Weisskopf MG. Traffic-related air pollution and autism spectrum disorder: a population-based nested case-control study in Israel. Am J Epidemiol. 2018;187(4):717–25.

    Article  PubMed  Google Scholar 

  39. Vicedo-Cabrera AM, Olsson D, Forsberg B. Exposure to seasonal temperatures during the last month of gestation and the risk of preterm birth in Stockholm. Int J Environ Res Public Health. 2015;12(4):3962–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vicedo-Cabrera AM, Iniguez C, Barona C, Ballester F. Exposure to elevated temperatures and risk of preterm birth in Valencia, Spain. Environ Res. 2014;134:210–7.

    Article  PubMed  CAS  Google Scholar 

  41. Benmarhnia T, Auger N, Stanislas V, Lo E, Kaufman JS. The relationship between apparent temperature and daily number of live births in Montreal. Matern Child Health J. 2015;19(12):2548–51.

    Article  PubMed  Google Scholar 

  42. Cox B, Vicedo-Cabrera AM, Gasparrini A, Roels HA, Martens E, Vangronsveld J, et al. Ambient temperature as a trigger of preterm delivery in a temperate climate. J Epidemiol Community Health. 2016.

  43. Claus Henn B, Austin C, Coull BA, Schnaas L, Gennings C, Horton MK, et al. Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environ Res. 2018;161:588–98.

    Article  PubMed  CAS  Google Scholar 

  44. • Bello GA, Arora M, Austin C, Horton MK, Wright RO, Gennings C. Extending the distributed lag model framework to handle chemical mixtures. Environ Res. 2017;156:253–64 Extends distributed lag models to address periods of susceptibility to exposure mixtures using weighted quantile sum or tree-based methods.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Welty LJ, Peng RD, Zeger SL, Dominici F. Bayesian distributed lag models: estimating effects of particulate matter air pollution on daily mortality. Biometrics. 2009;65(1):282–91.

    Article  PubMed  CAS  Google Scholar 

  46. Roberts EM, English PB. Bayesian modeling of time-dependent vulnerability to environmental hazards: an example using autism and pesticide data. Stat Med. 2013;32(13):2308–19.

    Article  PubMed  Google Scholar 

  47. Lee A, Leon Hsu HH, Mathilda Chiu YH, Bose S, Rosa MJ, Kloog I, et al. Prenatal fine particulate exposure and early childhood asthma: effect of maternal stress and fetal sex. J Allergy Clin Immunol. 2018;141(5):1880–6.

    Article  PubMed  CAS  Google Scholar 

  48. Chiu YM, Hsu HL, Wilson A, Coull BA, Pendo MP, Baccarelli A, et al. Prenatal particulate air pollution exposure and body composition in urban preschool children: examining sensitive windows and sex-specific associations. Environ Res. 2017;158:798–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bose S, Chiu YM, Hsu HL, Di Q, Rosa MJ, Lee A, et al. Prenatal nitrate exposure and childhood asthma. Influence of maternal prenatal stress and fetal sex. Am J Respir Crit Care Med. 2017;196(11):1396–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brunst KJ, Sanchez-Guerra M, Chiu YM, Wilson A, Coull BA, Kloog I, et al. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: effect modification by maternal lifetime trauma and child sex. Environ Int. 2018;112:49–58.

    Article  PubMed  CAS  Google Scholar 

  51. Warren J, Fuentes M, Herring A, Langlois P. Bayesian spatial-temporal model for cardiac congenital anomalies and ambient air pollution risk assessment. Environmetrics. 2012;23(8):673–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Warren JL, Fuentes M, Herring AH, Langlois PH. Air pollution metric analysis while determining susceptible periods of pregnancy for low birth weight. ISRN Obstet Gynecol. 2013;2013:387452.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Warren JL, Stingone JA, Herring AH, Luben TJ, Fuentes M, Aylsworth AS, et al. Bayesian multinomial probit modeling of daily windows of susceptibility for maternal PM2.5 exposure and congenital heart defects. Stat Med. 2016;35(16):2786–801.

    Article  PubMed  PubMed Central  Google Scholar 

  54. • Chang HH, Warren JL, Darrow LA, Reich BJ, Waller LA. Assessment of critical exposure and outcome windows in time-to-event analysis with application to air pollution and preterm birth study. Biostatistics. 2015;16(3):509–21 Addresses susceptible periods when the outcome is time-varying.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Perrier F, Giorgis-Allemand L, Slama R, Philippat C. Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidemiology (Cambridge, Mass). 2016;27(3):378–88.

    Article  Google Scholar 

  56. Kuchenhoff H, Mwalili SM, Lesaffre E. A general method for dealing with misclassification in regression: the misclassification SIMEX. Biometrics. 2006;62(1):85–96.

    Article  PubMed  Google Scholar 

  57. Cole SR, Chu H, Greenland S. Multiple-imputation for measurement-error correction. Int J Epidemiol. 2006;35(4):1074–81.

    Article  PubMed  Google Scholar 

  58. Rosner B, Willett WC, Spiegelman D. Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med. 1989;8(9):1051–69 discussion 71–3.

    Article  PubMed  CAS  Google Scholar 

  59. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–E150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Carlin DJ, Rider CV, Woychik R, Birnbaum LS. Unraveling the health effects of environmental mixtures: an NIEHS priority. Environ Health Perspect. 2013;121(1):A6–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Braun JM, Gennings C, Hauser R, Webster TF. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect. 2016;124(1):A6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Warren JL, Son JY, Pereira G, Leaderer BP, Bell ML. Investigating the impact of maternal residential mobility on identifying critical windows of susceptibility to ambient air pollution during pregnancy. Am J Epidemiol. 2018;187(5):992–1000.

    Article  PubMed  Google Scholar 

  63. Dionisio KL, Chang HH, Baxter LK. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models. Environ Health. 2016;15(1):114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Keller JP, Drton M, Larson T, Kaufman JD, Sandler DP, Szpiro AA. Covariate-adaptive clustering of exposures for air pollution epidemiology cohorts. Ann Appl Stat. 2017;11(1):93–113.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weisskopf MG, Seals RM, Webster TF. Bias amplification in epidemiologic analysis of exposure to mixtures. Environ Health Perspect. 2018;126(4):047003.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

JPB and GBH: 5U24OD023382

JMB: R01 ES025214, R01 ES024381, R01 ES027408, and UG3 OD023313

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie P. Buckley.

Ethics declarations

Conflict of Interest

Joseph M. Braun was financially compensated for serving as an expert witness for plaintiffs in litigation related to tobacco smoke exposures. Jessie P. Buckley and Ghassan B. Hamra report grants from NIH during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Methods in Environmental Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckley, J.P., Hamra, G.B. & Braun, J.M. Statistical Approaches for Investigating Periods of Susceptibility in Children’s Environmental Health Research. Curr Envir Health Rpt 6, 1–7 (2019). https://doi.org/10.1007/s40572-019-0224-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-019-0224-5

Keywords

Navigation