Skip to main content
Log in

Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings

  • Mechanisms of Toxicity (JR Richardson, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review sought to address the potential for air pollutants to impair cognition and mechanisms by which that might occur.

Recent Findings

Air pollution has been associated with deficits in cognitive functions across a wide range of epidemiological studies, both with developmental and adult exposures. Studies in animal models are significantly more limited in number, with somewhat inconsistent findings to date for measures of learning, but show more consistent impairments for short-term memory. Potential contributory mechanisms include oxidative stress/inflammation, altered levels of dopamine and/or glutamate, and changes in synaptic plasticity/structure.

Summary

Epidemiological studies are consistent with adverse effects of air pollutants on cognition, but additional studies and better phenotypic characterization are needed for animal models, including more precise delineation of specific components of cognition that are affected, as well as definitions of critical exposure periods for such effects and the components of air pollution responsible. This would permit development of more circumscribed hypotheses as to potential behavioral and neurobiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015:2287–323. Doi:10.1016/S0140-6736(15)00128-2.

  2. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525(7569):367–71. doi:10.1038/nature15371.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, et al. Ultrafine particles in cities. Environ Int. 2014;66:1–10. doi:10.1016/j.envint.2014.01.013.

    Article  CAS  PubMed  Google Scholar 

  4. Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102(Suppl 5):173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 2001;175(3):191–9. doi:10.1006/taap.2001.9240.

    Article  CAS  PubMed  Google Scholar 

  6. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewis J, Bench G, Myers O, Tinner B, Staines W, Barr E, et al. Trigeminal uptake and clearance of inhaled manganese chloride in rats and mice. Neurotoxicology. 2005;26(1):113–23. doi:10.1016/j.neuro.2004.06.005.

    Article  CAS  PubMed  Google Scholar 

  8. Ruuskanen J, Tuch T, Brink T, Peters A, Khlystov A, Mirme A, et al. Concentrations of ultrafine, fine and PM2.5 particles in three European cities. Atmos Environ. 2001;35:3729–8.

    Article  CAS  Google Scholar 

  9. Pitz M, Kreyling WG, Holscher B, Cyrys J, Wichmann HE, Heinrich J. Change of the ambient particle size distribution in East Germany between 1993 and 1999. Atmos Environ. 2001;35(25):4357–66. doi:10.1016/S1352-2310(01)00229-1.

    Article  CAS  Google Scholar 

  10. Martins LD, Martins JA, Freitas ED, Mazzoli CR, Goncalves FLT, Ynoue RY, et al. Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions: a model-based study. Air Quality Atmosphere and Health. 2010;3(1):29–39. doi:10.1007/s11869-009-0048-9.

    Article  Google Scholar 

  11. Frank BP, Tang S, Lanni T, Grygas J, Rideout G, Meyer N, et al. The effect of fuel type and aftertreatment method on ultrafine particle emissions from a heavy-duty diesel engine. Aerosol Sci Technol. 2007;41(11):1029–39. doi:10.1080/02786820701697531.

    Article  CAS  Google Scholar 

  12. Ristovski ZD, Jayaratne ER, Lim M, Ayoko GA, Morawska L. Influence of diesel fuel sulfur on nanoparticle emissions from city buses. Environmental Science & Technology. 2006;40(4):1314–20. doi:10.1021/es050094i.

    Article  CAS  Google Scholar 

  13. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology. 2015; doi:10.1016/j.neuro.2015.11.008.

    PubMed Central  Google Scholar 

  14. Heusinkveld HJ, Wahle T, Campbell A, Westerink RH, Tran L, Johnston H, et al. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016;56:94–106. doi:10.1016/j.neuro.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  15. Power MC, Adar SD, Yanosky JD, Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research. Neurotoxicology. 2016; doi:10.1016/j.neuro.2016.06.004.

    PubMed  Google Scholar 

  16. Xu X, Ha SU, Basnet R. A review of epidemiological research on adverse neurological effects of exposure to ambient air pollution. Front Public Health. 2016;4:157. doi:10.3389/fpubh.2016.00157.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Block ML, Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506–16. doi:10.1016/j.tins.2009.05.009. Review of potential peripheral and CNS mechanisms of air pollution-induced neurotoxicity

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course—a systematic literature review. Environ Res. 2016;147:383–98. doi:10.1016/j.envres.2016.01.018.

    Article  CAS  PubMed  Google Scholar 

  19. Guxens M, Sunyer J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med Wkly. 2012;141:w13322. doi:10.4414/smw.2011.13322.

    PubMed  Google Scholar 

  20. Peters R, Peters J, Booth A, Mudway I. Is air pollution associated with increased risk of cognitive decline? A systematic review. Age Ageing. 2015;44(5):755–60. doi:10.1093/ageing/afv087.

    Article  PubMed  Google Scholar 

  21. Suades-Gonzalez E, Gascon M, Guxens M, Sunyer J. Air pollution and neuropsychological development: a review of the latest evidence. Endocrinology. 2015:en20151403. doi:10.1210/en.2015-1403.

  22. Woodward N, Finch CE, Morgan TE. Traffic-related air pollution and brain development. AIMS Environ Sci. 2015;2(2):353–73. doi:10.3934/environsci.2015.2.353.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ranft U, Schikowski T, Sugiri D, Krutmann J, Kramer U. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004–11. doi:10.1016/j.envres.2009.08.003.

    Article  CAS  PubMed  Google Scholar 

  24. Schikowski T, Vossoughi M, Vierkotter A, Schulte T, Teichert T, Sugiri D, et al. Association of air pollution with cognitive functions and its modification by APOE gene variants in elderly women. Environ Res. 2015;142:10–6. doi:10.1016/j.envres.2015.06.009.

    Article  CAS  PubMed  Google Scholar 

  25. Tzivian L, Dlugaj M, Winkler A, Weinmayr G, Hennig F, Fuks KB, et al. Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: a cross-sectional analysis of the Heinz Nixdorf Recall Study. Environ Health Perspect. 2016;124(9):1361–8. doi:10.1289/ehp.1509824.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Colicino E, Wilson A, Frisardi MC, Prada D, Power MC, Hoxha M, et al. Telomere length, long-term black carbon exposure, and cognitive function in a cohort of older men: the VA Normative Aging Study. Environ Health Perspect. 2016; doi:10.1289/EHP241.

    Google Scholar 

  27. Best EA, Juarez-Colunga E, James K, LeBlanc WG, Serdar B. Biomarkers of exposure to polycyclic aromatic hydrocarbons and cognitive function among elderly in the United States (National Health and Nutrition Examination Survey: 2001–2002). PLoS One. 2016;11(2):e0147632. doi:10.1371/journal.pone.0147632.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ailshire JA, Clarke P. Fine particulate matter air pollution and cognitive function among U.S. older adults. J Gerontol B Psychol Sci Soc Sci. 2015;70(2):322–8. doi:10.1093/geronb/gbu064.

    Article  PubMed  Google Scholar 

  29. Gatto NM, Henderson VW, Hodis HN, St John JA, Lurmann F, Chen JC, et al. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology. 2014;40:1–7. doi:10.1016/j.neuro.2013.09.004.

    Article  CAS  PubMed  Google Scholar 

  30. • Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012;172(3):219–27. doi:10.1001/archinternmed.2011.683. Epidemiological study across 7-14 years showing that a 10 ug/m 3 increase in long-term PM exposure is the cognitive aging equivalent of approximately 2 years

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tonne C, Elbaz A, Beevers S, Singh-Manoux A. Traffic-related air pollution in relation to cognitive function in older adults. Epidemiology. 2014;25(5):674–81. doi:10.1097/EDE.0000000000000144.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wellenius GA, Boyle LD, Coull BA, Milberg WP, Gryparis A, Schwartz J, et al. Residential proximity to nearest major roadway and cognitive function in community-dwelling seniors: results from the MOBILIZE Boston Study. J Am Geriatr Soc. 2012;60(11):2075–80. doi:10.1111/j.1532-5415.2012.04195.x.

    PubMed  PubMed Central  Google Scholar 

  33. Harris MH, Gold DR, Rifas-Shiman SL, Melly SJ, Zanobetti A, Coull BA, et al. Prenatal and childhood traffic-related pollution exposure and childhood cognition in the project viva cohort (Massachusetts, USA). Environ Health Perspect. 2015;123(10):1072–8. doi:10.1289/ehp.1408803.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harris MH, Gold DR, Rifas-Shiman SL, Melly SJ, Zanobetti A, Coull BA, et al. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. Neurotoxicol Teratol. 2016; doi:10.1016/j.ntt.2016.06.008.

    PubMed  Google Scholar 

  35. Wang S, Zhang J, Zeng X, Zeng Y, Wang S, Chen S. Association of traffic-related air pollution with childrenʼs neurobehavioral functions in Quanzhou. China Environ Health Perspect. 2009;117(10):1612–8. doi:10.1289/ehp.0800023.

    Article  CAS  PubMed  Google Scholar 

  36. Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ. Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol. 2008;167(3):280–6. doi:10.1093/aje/kwm308.

    Article  PubMed  Google Scholar 

  37. van Kempen E, Fischer P, Janssen N, Houthuijs D, van Kamp I, Stansfeld S, et al. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary school children. Environ Res. 2012;115:18–25. doi:10.1016/j.envres.2012.03.002.

    Article  PubMed  Google Scholar 

  38. Guxens M, Garcia-Esteban R, Giorgis-Allemand L, Forns J, Badaloni C, Ballester F, et al. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts. Epidemiology. 2014;25(5):636–47. doi:10.1097/EDE.0000000000000133.

    Article  PubMed  Google Scholar 

  39. Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res Int. 2015;22(5):3631–9. doi:10.1007/s11356-014-3627-8.

    Article  CAS  PubMed  Google Scholar 

  40. Kicinski M, Vermeir G, Van Larebeke N, Den Hond E, Schoeters G, Bruckers L, et al. Neurobehavioral performance in adolescents is inversely associated with traffic exposure. Environ Int. 2015;75:136–43. doi:10.1016/j.envint.2014.10.028.

    Article  PubMed  Google Scholar 

  41. Siddique S, Banerjee M, Ray MR, Lahiri T. Attention-deficit hyperactivity disorder in children chronically exposed to high level of vehicular pollution. Eur J Pediatr. 2011;170(7):923–9. doi:10.1007/s00431-010-1379-0.

    Article  CAS  PubMed  Google Scholar 

  42. Newman NC, Ryan P, Lemasters G, Levin L, Bernstein D, Hershey GK, et al. Traffic-related air pollution exposure in the first year of life and behavioral scores at 7 years of age. Environ Health Perspect. 2013;121(6):731–6. doi:10.1289/ehp.1205555.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gong T, Almqvist C, Bolte S, Lichtenstein P, Anckarsater H, Lind T, et al. Exposure to air pollution from traffic and neurodevelopmental disorders in Swedish twins. Twin Res Hum Genet. 2014;17(6):553–62. doi:10.1017/thg.2014.58.

    Article  PubMed  Google Scholar 

  44. Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, Lopez-Vicente M, et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 2015;12(3):e1001792. doi:10.1371/journal.pmed.1001792.

    Article  PubMed  PubMed Central  Google Scholar 

  45. • Basagana X, Esnaola M, Rivas I, Amato F, Alvarez-Pedrerol M, Forns J, et al. Neurodevelopmental deceleration by urban fine particles from different emission sources: a longitudinal observational study. Environ Health Perspect. 2016:124(5). doi:10.1289/EHP209. Epidemiological study reporting that even an increase of an interquartile range in indoor traffic-related PM 2.5 was associated with reductions in cognitive growth, working memory and inattentiveness that ranged from 11–30%.

  46. Kim E, Park H, Hong YC, Ha M, Kim Y, Kim BN, et al. Prenatal exposure to PM(1)(0) and NO(2) and childrenʼs neurodevelopment from birth to 24 months of age: mothers and Childrenʼs Environmental Health (MOCEH) study. Sci Total Environ. 2014;481:439–45. doi:10.1016/j.scitotenv.2014.01.107.

    Article  CAS  PubMed  Google Scholar 

  47. Hougaard KS, Jensen KA, Nordly P, Taxvig C, Vogel U, Saber AT, et al. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice. Part Fibre Toxicol. 2008;5:3. doi:10.1186/1743-8977-5-3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yokota S, Sato A, Umezawa M, Oshio S, Takeda K. In utero exposure of mice to diesel exhaust particles affects spatial learning and memory with reduced N-methyl-D-aspartate receptor expression in the hippocampus of male offspring. Neurotoxicology. 2015;50:108–15. doi:10.1016/j.neuro.2015.08.009.

    Article  CAS  PubMed  Google Scholar 

  49. Win-Shwe TT, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology. 2012;6(5):543–53. doi:10.3109/17435390.2011.590904.

    Article  CAS  PubMed  Google Scholar 

  50. Win-Shwe TT, Fujimaki H, Fujitani Y, Hirano S. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol Appl Pharmacol. 2012;262(3):355–62. doi:10.1016/j.taap.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  51. Win-Shwe TT, Fujitani Y, Kyi-Tha-Thu C, Furuyama A, Michikawa T, Tsukahara S, et al. Effects of diesel engine exhaust origin secondary organic aerosols on novel object recognition ability and maternal behavior in BALB/c mice. Int J Environ Res Public Health. 2014;11(11):11286–307. doi:10.3390/ijerph111111286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fonken LK, Xu X, Weil ZM, Chen G, Sun Q, Rajagopalan S, et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry. 2011;16(10):987–95. 73 doi:10.1038/mp.2011.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Allen JL, Liu X, Weston D, Prince L, Oberdorster G, Finkelstein JN, et al. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol Sci. 2014;140(1):160–78. doi:10.1093/toxsci/kfu059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Allen JL, Conrad K, Oberdorster G, Johnston CJ, Sleezer B, Cory-Slechta DA. Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ Health Perspect. 2013;121(1):32–8. doi:10.1289/ehp.1205505.

    Article  PubMed  Google Scholar 

  55. Zanchi AC, Fagundes LS, Barbosa Jr F, Bernardi R, Rhoden CR, Saldiva PH, et al. Pre and post-natal exposure to ambient level of air pollution impairs memory of rats: the role of oxidative stress. Inhal Toxicol. 2010;22(11):910–8. doi:10.3109/08958378.2010.494313.

    Article  CAS  PubMed  Google Scholar 

  56. Dong J, Shang Y, Inthavong K, Tu J, Chen R, Bai R, et al. From the cover: comparative numerical modeling of inhaled nanoparticle deposition in human and rat nasal cavities. Toxicol Sci. 2016;152(2):284–96. doi:10.1093/toxsci/kfw087.

    Article  CAS  PubMed  Google Scholar 

  57. Garcia GJ, Schroeter JD, Kimbell JS. Olfactory deposition of inhaled nanoparticles in humans. Inhal Toxicol. 2015;27(8):394–403. doi:10.3109/08958378.2015.1066904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pedata P, Stoeger T, Zimmermann R, Peters A, Oberdorster G, D’Anna A. Are we forgetting the smallest, sub 10 nm combustion generated particles? Part Fibre Toxicol. 2017.

  59. Ronkko T, Virtanen A, Kannosto J, Keskinen J, Lappi M, Pirjola L. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. Environ Sci Technol. 2007;41:6384–9.

    Article  CAS  PubMed  Google Scholar 

  60. Win-Shwe TT, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H. Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology. 2008;29(6):940–7. doi:10.1016/j.neuro.2008.09.007.

    Article  CAS  PubMed  Google Scholar 

  61. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque P. Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. Biomed Res Int. 2014;2014:736385. doi:10.1155/2014/736385.

    PubMed  PubMed Central  Google Scholar 

  62. Karadottir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience. 2007;145(4):1426–38. doi:10.1016/j.neuroscience.2006.08.070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci. 2011;29(4):423–40. doi:10.1016/j.ijdevneu.2011.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal ‘Onʼ and ‘Offʼ signals control microglia. Trends Neurosci. 2007;30(11):596–602. doi:10.1016/j.tins.2007.08.007.

    Article  CAS  PubMed  Google Scholar 

  65. Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol. 2009;87(4):264–80. doi:10.1016/j.pneurobio.2009.01.003.

    Article  CAS  PubMed  Google Scholar 

  66. Matute C, Alberdi E, Domercq M, Sanchez-Gomez MV, Perez-Samartin A, Rodriguez-Antiguedad A, et al. Excitotoxic damage to white matter. J Anat. 2007;210(6):693–702. doi:10.1111/j.1469-7580.2007.00733.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmitz T, Krabbe G, Weikert G, Scheuer T, Matheus F, Wang Y, et al. Minocycline protects the immature white matter against hyperoxia. Exp Neurol. 2014;254:153–65. doi:10.1016/j.expneurol.2014.01.017.

    Article  CAS  PubMed  Google Scholar 

  68. Schwarz JM, Bilbo SD. Sex, glia, and development: interactions in health and disease. Horm Behav. 2012;62(3):243–53. doi:10.1016/j.yhbeh.2012.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tay TL, Savage J, Hui CW, Bisht K, Tremblay ME. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol. 2016; doi:10.1113/JP272134.

    PubMed  Google Scholar 

  70. Skaper SD, Facci L, Giusti P. Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets. 2014;13(10):1654–66.

    Article  PubMed  Google Scholar 

  71. Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry. 2015;77(12):1089–97. doi:10.1016/j.biopsych.2015.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pavlova MA, Krageloh-Mann I. Limitations on the developing preterm brain: impact of periventricular white matter lesions on brain connectivity and cognition. Brain. 2013;136(Pt 4):998–1011. doi:10.1093/brain/aws334.

    Article  PubMed  Google Scholar 

  73. Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol. 2010;7:12. doi:10.1186/1743-8977-7-12.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect. 2011;119(8):1149–55. doi:10.1289/ehp.1002986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roque PJ, Dao K, Costa LG. Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. Neurotoxicology. 2016;56:204–14. doi:10.1016/j.neuro.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  76. Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdorster G, et al. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ Health Perspect. 2014;122(9):939–45. doi:10.1289/ehp.1307984.

    PubMed  PubMed Central  Google Scholar 

  77. • Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M, et al. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology. 2015; doi:10.1016/j.neuro.2015.12.014. Mouse model of human third trimester equivalent exposure to ultrafine particles demonstratingneuropathological, neurochemical and behavioral consequences that parallel those seen in many human neurodevelopmental disorders.

    Google Scholar 

  78. Guo L, Li B, Miao JJ, Yun Y, Li GK, Sang N. Seasonal variation in air particulate matter (PM10) exposure-induced ischemia-like injuries in the rat brain. Chem Res Toxicol. 2015;28(3):431–9. doi:10.1021/tx500392n.

    Article  CAS  PubMed  Google Scholar 

  79. Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nano-scale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect. 2016; doi:10.1289/EHP134.

    Google Scholar 

  80. Chen JC, Wang X, Wellenius GA, Serre ML, Driscoll I, Casanova R, et al. Ambient air pollution and neurotoxicity on brain structure: evidence from Womenʼs Health Initiative Memory Study. Ann Neurol. 2015; doi:10.1002/ana.24460.

    Google Scholar 

  81. Pujol J, Martinez-Vilavella G, Macia D, Fenoll R, Alvarez-Pedrerol M, Rivas I, et al. Traffic pollution exposure is associated with altered brain connectivity in school children. NeuroImage. 2016;129:175–84. doi:10.1016/j.neuroimage.2016.01.036.

    Article  CAS  PubMed  Google Scholar 

  82. Peterson D, Mahajan R, Crocetti D, Mejia A, Mostofsky S. Left-hemispheric microstructural abnormalities in children with high-functioning autism spectrum disorder. Autism Res. 2015;8(1):61–72. doi:10.1002/aur.1413.

    Article  PubMed  Google Scholar 

  83. Cepeda C, Andre VM, Jocoy EL, Levine MS. NMDA and dopamine: diverse mechanisms applied to interacting receptor systems. In: Van Dongen AM, editor. Biology of the NMDA receptor. Boca Raton: Frontiers in Neuroscience; 2009.

    Google Scholar 

  84. Wang M, Wong AH, Liu F. Interactions between NMDA and dopamine receptors: a potential therapeutic target. Brain Res. 2012;1476:154–63. doi:10.1016/j.brainres.2012.03.029.

    Article  CAS  PubMed  Google Scholar 

  85. Win-Shwe TT, Kyi-Tha-Thu C, Moe Y, Fujitani Y, Tsukahara S, Hirano S. Exposure of BALB/c mice to diesel engine exhaust origin secondary organic aerosol (DE-SOA) during the developmental stages impairs the social behavior in adult life of the males. Front Neurosci. 2015;9:524. doi:10.3389/fnins.2015.00524.

    PubMed  Google Scholar 

  86. Win-Shwe TT, Fujimaki H, Fujitani Y, Hirano S. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol Appl Pharmacol. 2012;262(3):355–62. doi:10.1016/j.taap.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  87. Cory-Slechta DA, Virgolini MB, Rossi-George A, Weston D, Thiruchelvam M. Experimental manipulations blunt time-induced changes in brain monoamine levels and completely reverse stress, but not Pb+/− stress-related modifications to these trajectories. Behav Brain Res. 2009;205(1):76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cory-Slechta DA, Merchant-Borna K, Allen J, Liu S, Weston D, Conrad K. Variations in the nature of behavioral experience can differentially alter the consequences of developmental exposures to lead, prenatal stress and the combination. Toxicol Sci. 2013;131:194–205. doi:10.1093/toxsci/kfs260.

    Article  CAS  PubMed  Google Scholar 

  89. Yokota S, Mizuo K, Moriya N, Oshio S, Sugawara I, Takeda K. Effect of prenatal exposure to diesel exhaust on dopaminergic system in mice. Neurosci Lett. 2009;449(1):38–41. doi:10.1016/j.neulet.2008.09.085.

    Article  CAS  PubMed  Google Scholar 

  90. Yokota S, Moriya N, Iwata M, Umezawa M, Oshio S, Takeda K. Exposure to diesel exhaust during fetal period affects behavior and neurotransmitters in male offspring mice. J Toxicol Sci. 2013;38(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  91. Yokota S, Oshio S, Moriya N, Takeda K. Social isolation-induced territorial aggression in male offspring is enhanced by exposure to diesel exhaust during pregnancy. PLoS One. 2016;11(2):e0149737. doi:10.1371/journal.pone.0149737.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Suzuki T, Oshio S, Iwata M, Saburi H, Odagiri T, Udagawa T, et al. In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice. Part Fibre Toxicol. 2010;7:7. doi:10.1186/1743-8977-7-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Allen JL, Liu X, Weston D, Conrad K, Oberdorster G, Cory-Slechta DA. Consequences of developmental exposure to concentrated ambient ultrafine particle air pollution combined with the adult paraquat and maneb model of the Parkinsonʼs disease phenotype in male mice. Neurotoxicology. 2014;41:80–8. doi:10.1016/j.neuro.2014.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z, et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect. 2011;119(7):1003–9. doi:10.1289/ehp.1002973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2007;13(2):54–63. doi:10.1016/j.molmed.2006.12.005.

    Article  CAS  PubMed  Google Scholar 

  96. Davis DA, Bortolato M, Godar SC, Sander TK, Iwata N, Pakbin P, et al. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS One. 2013;8(5):e64128. doi:10.1371/journal.pone.0064128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng H, Davis DA, Hasheminassab S, Sioutas C, Morgan TE, Finch CE. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFalpha in vitro. J Neuroinflammation. 2016;13:19. doi:10.1186/s12974-016-0480-3.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cory-Slechta DA. Behavioral measures of neurotoxicity. Neurotoxicology. 1989;10:271–95.

    CAS  PubMed  Google Scholar 

  99. Cory-Slechta D, Weiss B. Assessment of behavioral toxicity. In: Hayes AW, Kruger CL, editors. Principles and methods of toxicology. 6th ed. New York: CRC Press Taylor and Francis; 2014. p. 1831–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Cory-Slechta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does contain studies with animal subjects performed by the authors.

Additional information

This article is part of the Topical Collection on Mechanisms of Toxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, J.L., Klocke, C., Morris-Schaffer, K. et al. Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings. Curr Envir Health Rpt 4, 180–191 (2017). https://doi.org/10.1007/s40572-017-0134-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0134-3

Keywords

Navigation