Skip to main content
Log in

Effects of soil arching on behavior of composite pile supporting foundation pit

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This study uses the discrete element method (DEM) to simulate the soil arching effect of composite piles supporting foundation pits during excavation and revealed the influences of small grouted steel pipe pile diameter, position, pile spacing, and friction coefficient on horizontal soil arching. The DEM simulation results show that as the diameter of the small grouted steel pipe pile decreases, the displacement arch of the soil particles between the large bored pile and the small grouted steel pipe pile evolves from a triangle to a tower shape and finally to the arch shape. When the top of the large bored piles and the small grouted steel pipe piles is in line, the stress arch between the large pile and the small pile is half of the shape of the ellipse. The stress arch between the large and large piles is in the shape of a parabola; this supporting mode is the best for different positions of small steel pipe piles. When the center of the large bored pile and small grouted steel pipe pile is in line, the stress arch between the large pile and the small pile takes the shape of a parabola, and the stress arch between the two large piles is triangular. With the increase in pile spacing, the vertical displacement of soil particles gradually decreases, the redistribution of soil particles becomes weak, and the soil arching effect becomes insignificant. The increase in friction coefficient has little effect on the geometry of the soil arch but can improve the load transfer efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Al-Naddaf M, Han J (2021) Spring-based trapdoor tests investigating soil arching stability in embankment fill under localized surface loading. J Geotech Geoenviron Eng 147(9):04021087. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002601

    Article  Google Scholar 

  2. Lai HJ, Zheng JJ, Cui MJ et al (2020) “Soil arching” for piled embankments: insights from stress redistribution behaviour of DEM modelling. Acta Geotech 15(8):2117–2136. https://doi.org/10.1007/s11440-019-00902-x

    Article  Google Scholar 

  3. Du GQ, Wang SJ, Qin YT (2012) Determination of spacing between anchored piles in row for deep foundation pit. In: Applied mechanics and materials. Trans Tech Publications Ltd, 2012, 204: 2736-2739. https://doi.org/10.4028/www.scientific.net/AMM.204-208.2736

  4. Yue G, Feng F, Jia H (2011) Numerical simulation of soil arching effect in deep foundation pit with different influencing factors. In: 2011 International conference on electrical and control engineering. IEEE, 2393–2397. https://doi.org/10.1109/ICECENG.2011.6058163

  5. Pal RK, de Macedo RB, Andrade JE (2021) Tunnel excavation in granular media: the role of force chains. Granul Matter 23(4):1–14. https://doi.org/10.1007/s10035-021-01141-2

    Article  Google Scholar 

  6. Long YY, Tan Y (2020) Soil arching due to leaking of tunnel buried in water-rich sand. Tunn Undergr Space Technol 95:103158. https://doi.org/10.1016/j.tust.2019.103158

    Article  Google Scholar 

  7. Liu K, Dias D, Ding W et al (2021) Influence of soil-arching effect on tunnel face stability. Int J Geomech 21(7):04021107. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002060

    Article  Google Scholar 

  8. Rui R, van Tol F, Xia XL et al (2016) Evolution of soil arching; 2D DEM simulations. Comput Geotech 73:199–209. https://doi.org/10.1016/j.compgeo.2015.12.006

    Article  Google Scholar 

  9. Rui R, Van Tol AF, Xia YY et al (2016) Investigation of soil-arching development in dense sand by 2D model tests. Geotech Test J 39(3):415–430. https://doi.org/10.1520/GTJ20150130

    Article  Google Scholar 

  10. Rui R, Han J, Van Eekelen SJM, Wan Y (2019) Experimental investigation of soil-arching development in unreinforced and geosynthetic-reinforced pile-supported embankments. J Geotech Geoenviron Eng 145(1):04018103

    Article  Google Scholar 

  11. Zhao Y, Gong Q, Wu Y et al (2021) Evolution of active arching in granular materials: Insights from load, displacement, strain, and particle flow. Powder Technol 384:160–175. https://doi.org/10.1016/j.powtec.2021.02.011

    Article  Google Scholar 

  12. Zhang Z, Tao FJ, Han J et al (2021) Arching development in transparent soil during multiple trapdoor movement and surface footing loading. Int J Geomech 21(3):04020262. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001908

    Article  Google Scholar 

  13. da Silva BTS, Elshafie M (2021) Geosynthetic-reinforced soils above voids: observation and prediction of soil arching. Geotext Geomembr 49(3):579–592. https://doi.org/10.1016/j.geotexmem.2020.11.005

    Article  Google Scholar 

  14. Liang L, Xu C, Chen Q et al (2020) Experimental and theoretical investigations on evolution of soil-arching effect in 2D trapdoor problem. Int J Geomech 20(6):06020007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001643

    Article  Google Scholar 

  15. Fang YG, Guo LF, Hou MX (2020) Arching effect analysis of granular media based on force chain visualization. Powder Technol 363:621–628. https://doi.org/10.1016/j.powtec.2020.01.038

    Article  Google Scholar 

  16. Rui R, van Tol F, Xia Y et al (2018) Evolution of soil arching: 2D analytical models. Int J Geomech 18(6):04018056. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001169

    Article  Google Scholar 

  17. Liu M, Wang H, Zhang H (2020) Analysis of pile spacing considering end-bearing soil arching and friction soil arching. In: E3S web of conferences. EDP Sciences, 198: 01014. https://doi.org/10.1051/e3sconf/202019801014

  18. Lv W, Wu T, Gu F et al (2020) Evaluation of soil arching effect due to partially mobilized shear stress in piled and geosynthetic-reinforced embankment. J Central South Univ 27(7):2094–2112. https://doi.org/10.1007/s11771-020-4433-8

    Article  Google Scholar 

  19. Van Eekelen SJM, Venmans AAM, Bezuijen A et al (2020) Long term measurements in the Woerden geosynthetic-reinforced pile-supported embankment. Geosynth Int 27(2):142–156. https://doi.org/10.1680/jgein.17.00022

    Article  Google Scholar 

  20. Huckert A, Briançon L, Villard P et al (2016) Load transfer mechanisms in geotextile-reinforced embankments overlying voids: experimental and analytical approaches. Geotext Geomembr 44(3):442–456. https://doi.org/10.1016/j.geotexmem.2015.06.005

    Article  Google Scholar 

  21. Lu W, Miao L, Wang F et al (2020) A case study on geogrid-reinforced and pile-supported widened highway embankment. Geosynth Int 27(3):261–274. https://doi.org/10.1680/jgein.19.00024

    Article  Google Scholar 

  22. Yang QR, Li MG, Chen JJ (2021) Influence of a Flexible retaining wall on performance of an adjacent deep excavation. KSCE J Civ Eng. https://doi.org/10.1007/s12205-021-0762-x

    Article  Google Scholar 

  23. Meena NK, Nimbalkar S, Fatahi B et al (2020) Effects of soil arching on behavior of pile-supported railway embankment: 2D FEM approach. Comput Geotech 123:103601. https://doi.org/10.1016/j.compgeo.2020.103601

    Article  Google Scholar 

  24. Meena NK, Nimbalkar S, Fatahi B (2021) Finite element analysis of soil arching in piled embankment. In: International conference of the international association for computer methods and advances in geomechanics. Springer, Cham, 817–824. https://doi.org/10.1007/978-3-030-64518-2_97

  25. Chen RP, Liu QW, Wu HN et al (2020) Effect of particle shape on the development of 2D soil arching. Comput Geotech 125:103662. https://doi.org/10.1016/j.compgeo.2020.103662

    Article  Google Scholar 

  26. Gu MX, Han J, Zhao MH (2017) Three-dimensional discrete-element method analysis of stresses and deformations of a single geogrid-encased stone column. Int J Geomech 17(9):04017070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000952

    Article  Google Scholar 

  27. Chen Y, Deng A, Wang A et al (2018) Performance of screw–shaft pile in sand: model test and DEM simulation. Comput Geotech 104:118–130. https://doi.org/10.1016/j.compgeo.2018.08.013

    Article  Google Scholar 

  28. Jiang M, Dai Y, Cui L et al (2014) Investigating mechanism of inclined CPT in granular ground using DEM. Granul Matter 16(5):785–796. https://doi.org/10.1007/s10035-014-0508-2

    Article  Google Scholar 

  29. Fang Y, Li X, Guo L et al (2022) The experiment and analysis of the repose angle and the stress arch-caused stress dip of the sandpile. Granul Matter 24(1):1–12. https://doi.org/10.1007/s10035-021-01171-w

    Article  Google Scholar 

  30. Li MG, Chen JJ, Wang JH (2017) Arching effect on lateral pressure of confined granular material: numerical and theoretical analysis. Granul Matter 19(2):1–11. https://doi.org/10.1007/s10035-017-0700-2

    Article  Google Scholar 

  31. Jiang MJ, Yin ZY (2012) Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method. Tunn Undergr Space Technol 32:251–259. https://doi.org/10.1016/j.tust.2012.06.001

    Article  Google Scholar 

  32. Jiang MJ, He J, Wang JF et al (2014) Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill. Granul Matter 16(5):797–814

    Article  Google Scholar 

  33. Lai HJ, Zheng JJ, Zhang J et al (2014) DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments. Comput Geotech 61:13–23. https://doi.org/10.1016/j.compgeo.2014.04.007

    Article  Google Scholar 

  34. Li L, Wu W, El Naggar MH et al (2019) DEM analysis of the sand plug behavior during the installation process of open-ended pile. Comput Geotech 109:23–33. https://doi.org/10.1016/j.compgeo.2019.01.014

    Article  Google Scholar 

  35. Bao N, Wei J, Chen J et al (2020) 2D and 3D discrete numerical modelling of soil arching. J Zhejiang Univ Sci A 21(5):350–365. https://doi.org/10.1631/jzus.A1900672

    Article  Google Scholar 

  36. Sun R, He Y, Wang Y et al (2022) The blocking efficiency of slag blocking wall of the waste slag yard based on PFC2D. Comput Part Mech. https://doi.org/10.1007/s40571-022-00503-8

    Article  Google Scholar 

  37. Dong Y, Fatahi B, Khabbaz H et al (2018) Influence of particle contact models on soil response of poorly graded sand during cavity expansion in discrete element simulation. J Rock Mech Geotech Eng 10(6):1154–1170. https://doi.org/10.1016/j.jrmge.2018.03.009

    Article  Google Scholar 

  38. Fang K, Tang H, Su X et al (2020) Geometry and maximum width of a stable slope considering the arching effect. J Earth Sci 31(6):1087–1096. https://doi.org/10.1007/s12583-020-1052-0

    Article  Google Scholar 

  39. Han J, Wang F, Al-Naddaf M et al (2017) Progressive development of two-dimensional soil arching with displacement. Int J Geomech 17(12):04017112. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001025

    Article  Google Scholar 

  40. Han J, Wang F, Al-Naddaf M et al (2019) Discussion of “progressive development of two-dimensional soil arching with displacement” by Jie Han, Fei Wang, Mahdi Al-Naddaf, and Chao Xu. Int J Geomech 19(3):07018021. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001025

    Article  Google Scholar 

  41. Lai HJ, Zheng JJ, Zhang RJ et al (2018) Classification and characteristics of soil arching structures in pile-supported embankments. Comput Geotech 98:153–171. https://doi.org/10.1016/j.compgeo.2018.02.007

    Article  Google Scholar 

  42. Han J, Gabr MA (2002) Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. J Geotech and Geoenviron Eng 128(1):44–53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)

    Article  Google Scholar 

  43. Xu C, Zhang X, Han J et al (2019) Two-dimensional soil-arching behavior under static and cyclic loading. Int J Geomech 19(8):04019091. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001482

    Article  Google Scholar 

  44. Liu WR, Wang X, Li CM (2019) Numerical study of damage evolution law of coal mine roadway by particle flow code (PFC) model. Geotech Geol Eng 37(4):2883–2891. https://doi.org/10.1007/s10706-019-00803-6

    Article  Google Scholar 

  45. Itasca. Particle Flow Code in two Dimensions, version 5.0. 2008, Itasca Consulting Group Inc, Minnesot.

  46. Yamasaki K, Yajima T (2012) Differential geometric approach to the stress aspect of a fault: airy stress function surface and curvatures. Acta Geophys 60(1):4–23. https://doi.org/10.2478/s11600-011-0055-8

    Article  Google Scholar 

  47. Liang L, Xu C (2019) Numerical and theoretical research on stress distribution in the loosening zone of the trapdoor problem. Int J Numer Anal Meth Geomech 43(7):1426–1447. https://doi.org/10.1002/nag.2906

    Article  Google Scholar 

  48. Anh Tran Q, Villard P, Dias D (2019) Discrete and continuum numerical modeling of soil arching between piles. Int J Geomech 19(2):04018195. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001341

    Article  Google Scholar 

  49. Lai H, Zheng J, Zhang R et al (2016) Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation. J Zhejiang Univ Sci A 17(10):803–817. https://doi.org/10.1631/jzus.A1500302

    Article  Google Scholar 

  50. Peerun MI, Ong DEL, Choo CS, Cheng WC (2020) Effect of interparticle behavior on the development of soil arching in soil-structure interaction. Tunnell Undergr Space Technol 106:103610

    Article  Google Scholar 

  51. Zou J, Chen G, Qian Z (2019) Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Comput Geotech 106:1–17. https://doi.org/10.1016/j.compgeo.2018.10.014

    Article  Google Scholar 

  52. Eskişar T, Otani J, Hironaka J (2012) Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT. Geotext Geomembr 32:44–54

    Article  Google Scholar 

  53. Van Eekelen SJ, Bezuijen A et al (2012) Model experiments on piled embankments. Part I Geotext Geomembr 32:69–81. https://doi.org/10.1016/j.geotexmem.2011.11.002

    Article  Google Scholar 

  54. Jenck O, Dias D, Kastner R (2007) Two-dimensional physical and numerical modeling of a pile-supported earth platform over soft soil. J Geotech Geoenviron Eng 133(3):295–305. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:3(295)

    Article  Google Scholar 

  55. Zhang S, Zhang G, Zhang X et al (2020) Influences on antislide piles used for slope reinforcement: numerical simulation based on the soil arching effect. Math Probl Eng 2020:1–15. https://doi.org/10.1155/2020/7651080

    Article  Google Scholar 

  56. Jenck O, Dias D, Kastner R (2009) Discrete element modelling of a granular platform supported by piles in soft soil – Validation on a small scale model test and comparison to a numerical analysis in a continuum. Comput Geotech 36(6):917–927. https://doi.org/10.1016/j.compgeo.2009.02.001

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 217020711, 12172085). The authors greatly appreciate the provided financial support which made this study possible.

Author information

Authors and Affiliations

Authors

Contributions

DZ contributed to methodology, formal analysis, investigation, writing–original draft. XZ make suggestions and change the format. HT contributed to resources. ZZ supervised the study. JG validated the study. HZ contributed to conceptualization and project administration.

Corresponding author

Correspondence to Honghua Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, X., Tang, H. et al. Effects of soil arching on behavior of composite pile supporting foundation pit. Comp. Part. Mech. 10, 645–662 (2023). https://doi.org/10.1007/s40571-022-00518-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00518-1

Keywords

Navigation