Skip to main content
Log in

Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the Particle Finite Element Method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The Particle Finite Element Method (PFEM) is a Lagrangian finite element method with frequent remeshing, particularly suited for the simulation of fluid motions with evolving free surfaces, e.g., in the case of breaking waves or fluid–structure interactions with large displacements of the interaction surface. While the method has been successfully employed in a number of different engineering applications, there are several circumstances of practical interest where the Lagrangian nature of the method makes it difficult to enforce non-homogeneous boundary conditions. A novel mixed Lagrangian–Eulerian technique is proposed to the purpose of simplifying the imposition of this type of conditions with the PFEM. The method is simple to implement and computationally convenient, since only nodes on the boundary are considered Eulerian, while nodes inside the fluid body maintain their Lagrangian nature. A number of 2D and 3D examples, with analytical and numerical validations, confirm the excellent performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aubry R, Idelsohn S, Oñate E (2005) Particle finite element method in fluid-mechanics including thermal convection–diffusion. Comput Struct 83(17–18):1459–1475

    Google Scholar 

  2. Basic J, Degiuli N, Werner A (2014) Simulation of water entry and exit of a circular cylinder using the isph method. Trans Famena 38(1):45–62

    Google Scholar 

  3. Becker P, Idelsohn S, Oñate E (2014) A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the particle finite element method with fixed mesh. Comput Mech 55:1091–1104

    MathSciNet  MATH  Google Scholar 

  4. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  5. Bernard-Champmartin A, De Vuyst F (2014) A low diffusive Lagrange-remap scheme for the simulation of violent air–water free-surface flows. J Comput Phys 274:19–49

    MathSciNet  MATH  Google Scholar 

  6. Cante J, Davalos C, Hernandez JA, Oliver J, Jonsen P, Gustafsson G, Haggblad H (2014) PFEM-based modeling of industrial granular flows. Comput Part Mech 1(1):47–70

    Google Scholar 

  7. Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput Methods Appl Mech Eng 194(42–44):4506–4527

    MathSciNet  MATH  Google Scholar 

  8. Chan DYC, Horn RG (1985) The drainage of thin liquid films between solid surfaces. J Chem Phys 83(10):5311–5324

    Google Scholar 

  9. Chen Z, Zong Z, Liu MB, Li HT (2013) A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. Int J Numer Methods Fluids 73(9):813–829

    MathSciNet  Google Scholar 

  10. Choi J, Kudrolli A, Bazant MZ (2005) Velocity profile of granular flows inside silos and hoppers. J Phys Condens Matter 17(24):2533–2548

    Google Scholar 

  11. Cremonesi M, Ferri F, Perego U (2016) A basal slip model for Lagrangian finite element simulations of 3D landslides Massimiliano. Int J Numer Anal Methods Geomech 41(1):30–53

    Google Scholar 

  12. Cremonesi M, Frangi A, Perego U (2010) A Lagrangian finite element approach for the analysis of fluid–structure interaction problems. Int J Numer Methods Eng 84(April):610–630

    MathSciNet  MATH  Google Scholar 

  13. Cremonesi M, Frangi A, Perego U (2011) A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89(11–12):1086–1093

    Google Scholar 

  14. Cremonesi M, Meduri S, Perego U, Frangi A (2017) An explicit Lagrangian finite element method for free-surface weakly compressible flows. Comput Part Mech 4(3):357–369

    Google Scholar 

  15. Del Pin F, Idelsohn S, Oñate E, Aubry R (2007) The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid–object interactions. Comput Fluids 36(1):27–38

    MATH  Google Scholar 

  16. Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265–287

    MATH  Google Scholar 

  17. Deparis S, Discacciati M, Fourestey G, Quarteroni A (2006) Fluid–structure algorithms based on Steklov–Poincaré operators. Comput Methods Appl Mech Eng 195(41–43):5797–5812

    MATH  Google Scholar 

  18. Dione I, Tibirna C, Urquiza J (2013) Stokes equations with penalised slip boundary conditions. Int J Comput Fluid Dyn 27(6–7):283–296

    MathSciNet  Google Scholar 

  19. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, New York

    Google Scholar 

  20. Edelsbrunner H, Mucke EP (1994) Three dimensional alpha shapes. ACM Trans Graph 13(1):43–72

    MATH  Google Scholar 

  21. Étienne J, Hinch EJ, Li J (2006) A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material. J Non-Newtonian Fluid Mech 136(2):157–166

    MATH  Google Scholar 

  22. Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B Fluids 34(Supplement C):35–46

    MathSciNet  MATH  Google Scholar 

  23. Ferrás LL, Nóbrega JM, Pinho FT (2012) Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip. J Non-Newtonian Fluid Mech 175–176:76–88

    Google Scholar 

  24. Franci A, Oñate E, Carbonell JM (2016) Unified Lagrangian formulation for solid and fluid mechanics and FSI problems. Comput Methods Appl Mech Eng 298:520–547

    MathSciNet  MATH  Google Scholar 

  25. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    MATH  Google Scholar 

  26. Gravouil A, Combescure A (1999) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Methods Eng 199–225:2001

    Google Scholar 

  27. Hatzikiriakos SG (2012) Wall slip of molten polymers. Prog Polym Sci (Oxford) 37(4):624–643

    Google Scholar 

  28. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    MATH  Google Scholar 

  29. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York

    MATH  Google Scholar 

  30. Idelsohn S, Del Pin F, Rossi R, Oñate E (2009) Fluid–structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80:1261–1294

    MathSciNet  MATH  Google Scholar 

  31. Idelsohn S, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198(33–36):2750–2767

    MATH  Google Scholar 

  32. Idelsohn S, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989

    MathSciNet  MATH  Google Scholar 

  33. Idelsohn S, Oñate E, Del Pin F, Calvo N (2006) Fluid–structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195(17–18):2100–2123

    MathSciNet  MATH  Google Scholar 

  34. Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids 75(9):621–644

    MathSciNet  Google Scholar 

  35. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci Eng 123(3):421–434

    Google Scholar 

  36. Keat Tan S, Cheng N, Xie Y, Shao S (2015) Incompressible SPH simulation of open channel flow over smooth bed. J Hydro Environ Res 9(3):340–353

    Google Scholar 

  37. Larese A, Rossi R, Oñate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Int J Comput Aided Eng Softw 25:385–425

    MATH  Google Scholar 

  38. Lastiwka M, Basa M, Quinlan NJ (2009) Permeable and non-reflecting boundary conditions in SPH. Int J Numer Methods Fluids 61(7):709–724

    MathSciNet  MATH  Google Scholar 

  39. Léger L, Hervet H, Massey G, Durliat E (1997) Wall slip in polymer melts. J Phys Conden Matter 9(37):7719–7740

    Google Scholar 

  40. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat Commun 5:1–9

    Google Scholar 

  41. Meduri S, Cremonesi M, Perego U, Bettinotti O, Kurkchubasche A, Oancea V (2018) A partitioned fully explicit Lagrangian finite element method for highly nonlinear fluid–structure interaction problems. Int J Numer Methods Eng 113(1):43–64

    MathSciNet  Google Scholar 

  42. Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48(1):89–96

    MATH  Google Scholar 

  43. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    MATH  Google Scholar 

  44. Oñate E, Idelsohn S, Del Pin F, Aubry R (2004) The particle finite element method. An overview. Int J Comput Methods 1(2):267–307

    MATH  Google Scholar 

  45. Oñate E, Marti J, Ryzhakov P, Rossi R, Idelsohn S (2017) Analysis of the melting, burning and flame spread of polymers with the particle finite element method. Comput Assist Methods Eng Sci 20(3):165–184

    MathSciNet  Google Scholar 

  46. Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2):463–502

    MathSciNet  MATH  Google Scholar 

  47. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  48. Philippou M, Damianou Y, Miscouridou X, Georgiou GC (2017) Cessation of newtonian circular and plane couette flows with wall slip and non-zero slip yield stress. Meccanica 52(9):2081–2099

    MathSciNet  MATH  Google Scholar 

  49. Richardson S (1973) On the no-slip boundary condition. J Fluid Mech 59(4):707–719

    MATH  Google Scholar 

  50. Richter T, Wick T (2010) Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates. Comput Methods Appl Mech Eng 199(41–44):2633–2642

    MathSciNet  MATH  Google Scholar 

  51. Ryzhakov P, Jarauta A, Secanell M, Pons-Prats J (2017) On the application of the PFEM to droplet dynamics modeling in fuel cells. Comput Part Mech 4(3):285–295

    MATH  Google Scholar 

  52. Ryzhakov P, Oñate E, Rossi R, Idelsohn S (2012) Improving mass conservation in simulation of incompressible flows. Int J Numer Methods Eng 90(12):1435–1451

    MathSciNet  MATH  Google Scholar 

  53. Schaefer M, Bugnion L, Kern M, Bartelt P (2010) Position dependent velocity profiles in granular avalanches. Granul Matter 12(3):327–336

    Google Scholar 

  54. Schowalter WR (1988) The behavior of complex fluids at solid boundaries. J Non Newton Fluid Mech 29(C):25–36

    Google Scholar 

  55. Shadloo MS, Zainali A, Yildiz M, Suleman A (2012) A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Methods Eng 89:939–956

    MathSciNet  MATH  Google Scholar 

  56. Thompson P, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389(September):360–362

    Google Scholar 

  57. Tian F, Dai H, Luo H, Doyle JF, Rousseau B (2014) Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J Comput Phys 258:451–469

    MathSciNet  MATH  Google Scholar 

  58. Turek S, Hron J (2006) Fluid-Structure Interaction: Modelling, Simulation, Optimisation, vol 53. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer, pp 371–385.

  59. Verfürth R (1991) Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition II. Numer Math 59(1):615–636

    MathSciNet  MATH  Google Scholar 

  60. Wick T (2011) Fluid–structure interactions using different mesh motion techniques. Comput Struct 89(13–14):1456–1467

    Google Scholar 

  61. Zhang X, Krabbenhoft K, Pedroso DM, Lyamin AV, Sheng D, Vicente da Silva M, Wang D (2013) Particle Finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142

    Google Scholar 

  62. Zhao X, Bolognin M, Liang D, Rohe A, Vardon PJ (2019) Development of in/outflow boundary conditions for MPM simulation of uniform and non-uniform open channel flows. Comput Fluids 179:27–33

    MathSciNet  MATH  Google Scholar 

  63. Zhu M, Scott MH (2017) Unified fractional step method for Lagrangian analysis of quasi-incompressible fluid and nonlinear structure interaction using the PFEM. Int J Numer Methods Eng 109(9):1219–1236

    MathSciNet  Google Scholar 

  64. Zienkiewicz O, Taylor R, Nithiarasu P (2013) The finite element method for fluid dynamics, vol 3, 7th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  65. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cremonesi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Finite element matrices

Appendix: Finite element matrices

Let us consider the linear tetrahedron finite element of the standard 3D PFEM discretization. The global matrices involved in Eqs. (25)–(26) are obtained with standard assembly procedure of the following elemental matrices [65]:

$$\begin{aligned} \mathbf {M}_v&= \sum _{e=1,\dots N^e} \int _{\varOmega ^t_e} \rho \mathbf {N}^{vT}\mathbf {N}^v \, {\mathrm{d}}\varOmega \\ \mathbf {M}_p&= \sum _{e=1,\dots N^e} \int _{\varOmega ^t_e} \mathbf {N}^{pT}\mathbf {N}^p \, {\mathrm{d}}\varOmega \\ \mathbf {K}_{\mu }&= \sum _{e=1,\dots N^e} \int _{\varOmega ^t_e} \mathbf {B}^T \mathbf {d}_\mathrm{{dev}} \mathbf {B}\, {\mathrm{d}}\varOmega \\ \mathbf {D}&= \sum _{e=1,\dots N^e} \int _{\varOmega ^t_e} \left( \mathbf {B}^T \mathbf {m}\mathbf {N}^p \right) \, {\mathrm{d}}\varOmega \\ \mathbf {F}_{\mathrm{ext}}&= \sum _{e=1,\dots N^e} \left[ \int _{\varOmega ^t_e} \rho \mathbf {N}^{vT} \mathbf {b}\, {\mathrm{d}}\varOmega + \int _{\varGamma _{N,e}^t} \mathbf {N}^{vT} \mathbf {h}\, \mathrm{{d}}\varGamma \right] \\ \mathbf {K}_c ^v&= \sum _{e=1,\dots N^e} \int _{\varOmega ^t_e} \mathbf {N}^{vT}\mathbf {G}^v \, {\mathrm{d}}\varOmega \\ \mathbf {K}_c^p&= \sum _{e=1,\dots N^e} \int _{\varOmega ^t_e} \mathbf {N}^{pT}\mathbf {G}^p \, {\mathrm{d}}\varOmega \end{aligned}$$

In the previous expressions, the vector \(\mathbf {m}\) is defined as \(\mathbf {m}=[1\ 1\ 1\ 0\ 0\ 0]^{\mathrm{T}}\), while the \(\mathbf {B}\) matrix containing the shape functions derivatives can be divided in \(n_n\) nodal blocks (\(n_n=4\) for the tetrahedron):

$$\begin{aligned} \mathbf {B}=\left[ \mathbf {B}_1, \dots , \mathbf {B}_{n_n}\right] \end{aligned}$$
(35)

Each \(\mathbf {B}_i\) nodal block is a \(\left( 3 \times 6\right) \) matrix defined as:

$$\begin{aligned} \mathbf {B}_i^T = \left[ \begin{array}{ccc} \frac{\partial N^v_i}{\partial x} &{} 0 &{} 0 \\ 0 &{} \frac{\partial N^v_i}{\partial y} &{} 0 \\ 0 &{} 0 &{} \frac{\partial N^v_i}{\partial z}\\ \frac{\partial N^v_i}{\partial y} &{} \frac{\partial N^v_i}{\partial x}&{} 0 \\ 0 &{} \frac{\partial N^v_i}{\partial z} &{} \frac{\partial N^v_i}{\partial y}\\ \frac{\partial N^v_i}{\partial z} &{} 0 &{}\frac{\partial N^v_i}{\partial x} \\ \end{array} \right] \end{aligned}$$
(36)

The \(\mathbf {d}_\mathrm{{dev}}\) matrix contains the material properties of the considered fluid. For a Newtonian fluid it is given by:

$$\begin{aligned} \mathbf {d}_\mathrm{{dev}}= \left[ \begin{array}{cccccc} 4/3 &{} 2/3 &{} 2/3 &{} 0 &{} 0 &{} 0 \\ 2/3 &{} 4/3 &{} 2/3 &{} 0 &{} 0 &{} 0 \\ 2/3 &{} 2/3 &{} 4/3 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{array} \right] \end{aligned}$$
(37)

The matrices \(\mathbf {K}_c^v\) and \(\mathbf {K}_c^p\) are expressed in terms of \(\mathbf {G}^v\) and \(\mathbf {G}^p\) which can be defined in terms of their nodal blocks: The matrices related to the convective terms can be defined

$$\begin{aligned} \mathbf {G}^v&=\left[ \mathbf {G}^v_1, \dots , \mathbf {G}^v_{n_n}\right] \end{aligned}$$
(38)
$$\begin{aligned} \mathbf {G}^p&=\left[ \mathbf {G}^p_1, \dots , \mathbf {G}^p_{n_n}\right] \end{aligned}$$
(39)

Each \(\mathbf {G}^v_i\) block is a diagonal \(\left( 3\times 3\right) \) matrix:

$$\begin{aligned} \mathbf {G}^v_i= \text {diag} \left[ \left( \mathbf {C}^T \mathbf {N}^{vT} \mathbf {L}_i \right) _1 , \left( \mathbf {C}^T \mathbf {N}^{vT} \mathbf {L}_i \right) _2 , \left( \mathbf {C}^T \mathbf {N}^{vT} \mathbf {L}_i \right) _3 \right] \end{aligned}$$
(40)

where the following matrix of shape function derivatives is defined:

$$\begin{aligned} \mathbf {L}_i = \left[ \begin{array}{ccc} \frac{\partial N^v_{i,1}}{\partial x}&{}\frac{\partial N^v_{i,2}}{\partial x}&{}\frac{\partial N^v_{i,3}}{\partial x}\\ \frac{\partial N^v_{i,1}}{\partial y}&{}\frac{\partial N^v_{i,2}}{\partial y}&{}\frac{\partial N^v_{i,3}}{\partial y}\\ \frac{\partial N^v_{i,1}}{\partial z}&{}\frac{\partial N^v_{i,2}}{\partial z}&{}\frac{\partial N^v_{i,3}}{\partial z}\\ \end{array} \right] \end{aligned}$$
(41)

Finally, each \(\mathbf {G}^v_i\) block is given by a single component:

$$\begin{aligned} \mathbf {G}^p_i=\mathbf {C}^T \mathbf {N}^{vT} \mathbf {L}^p_i \end{aligned}$$
(42)

where \(\mathbf {L}^p_i\) is introduced:

$$\begin{aligned} \mathbf {L}^p_i=\left[ \frac{\partial N^p_{i}}{\partial x},\frac{\partial N^p_{i}}{\partial y},\frac{\partial N^p_{i}}{\partial z} \right] ^{\mathrm{T}} \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremonesi, M., Meduri, S. & Perego, U. Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the Particle Finite Element Method. Comp. Part. Mech. 7, 41–56 (2020). https://doi.org/10.1007/s40571-019-00245-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00245-0

Keywords

Navigation