Skip to main content
Log in

Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature Publishing Group, Department of Materials Science, University of Cambridge, Cambridge

    Google Scholar 

  2. Grossinger R, Duong GV, Sato-Turtlli R (2008) The physics of magnetoelectric composites. J Magn Magn Mater 320:1972–1977

    Article  Google Scholar 

  3. Ma J, Hu J, Li Z, Nan C-W (2011) Recent progress in multiferric magnetoelectric composites: from bulk to thin films. Adv Mater 23:1062–1087

    Article  Google Scholar 

  4. Bichurin M, Petrov V, Priya S, Bhalla A (2012) Editorial multiferric magnetoelectric composites and their applications. Adv Cond Matter Phys 12:129794

    Google Scholar 

  5. Brito VLO, Cunha SA, Lemos LV, Nunes CB (2012) Magnetic properties of liquid-phase sintered \(\text{CoFe}_{2}\text{O}_{4}\) for application in magneoelastic and magnetoelectric transducers. Sensors 12:10086–10096

    Article  Google Scholar 

  6. Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W, Zhan Q, Yang P-L, Fraile-Rodriquez A, Scholl A, Wang SX, Ramesh R (2008) Electric-field control of local ferromagnetism using magnetoelectric multiferric. Department of Materials Science and Engineering, University of California, Berkeley, CA. doi:10.1038/nmat2184

    Google Scholar 

  7. Nan C-W, Song M-IS, Veichland D, Srinivasan G (2008) Multiferric magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 3:1

    Google Scholar 

  8. Ortega N, Kumar A, Scott JF, Katlyar RS (2015) Multifunctional magnetostatic materials for device applications. J Phys Cond Matter 27:504002

    Article  Google Scholar 

  9. Sharif NSAB (2015) Synthesis and characterization of lead zirconate titanate \((\text{Pb[Zr}_{0.52}\text{Ti}_{0.48}]\text{O}_{3})\) properties via high energy planetary ball milling. Ph.D. dissertation, Manufacturing Engineering, University Malaysia Pahang

  10. Randall CA, Kim N, Kucera J-P, Cao W, Shrout TR (1998) Intrinsic and extrinsic size effects in fine grained morphotropic-phase-boundary lead zirconate titanete ceramics. J Am Ceram 81(3):677–688

    Article  Google Scholar 

  11. Nan C-W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151

    Article  Google Scholar 

  12. Bunde A, Deiterich W (2000) Percolation in composites. J Electroceram 5(2):81–92

    Article  Google Scholar 

  13. Muchenik TI, Barbero EJ (2014) Micromechanics modeling of magnetoelectric composites. In: Composites and advanced materials, CAMX Conference Proceedings, Orlando FL, Oct 13–16

  14. Muchenik TI, Barbero EJ (2015) Charge, voltage and work-conversion formulas for magnetoelectric laminated composites. Smart Mater Struct. doi:10.1088/0964-1726/24/2/025039

    Google Scholar 

  15. Muchenik TI, Barbero EJ (2016) Magnetoelectric composites. In: Barbero EJ (ed) Multifunctional composites. Create Space Independent Publishing, Charleston

    Google Scholar 

  16. Muchenik TI, Barbero EJ (2016) Prediction of extrinsic charge, voltage, and work-conversion factors for laminated magnetoelectric composites. Smart Matter Struct. doi:10.1088/0964-1726/25/1/015006

    Google Scholar 

  17. Scher H, Zallen R (1970) Critical density in percolation processes. J Chem Phys 53:3759

    Article  Google Scholar 

  18. Bolintineanu DS, Grest GS, Lechman JB, Fierce F, Plimpton SJ, Schunk PR (2014) Particle dynamics modeling methods for colloid suspensions. Comp Part Mech 1:321–356

    Article  Google Scholar 

  19. Staron L, Phillips JC (2015) How large grains increase bulk friction in bi-disperse granular chute flows. Comp Part Mech. doi:10.1007/s40571-015-0068-1

    Google Scholar 

  20. Saitoh K, Magnanimo V, Luding S (2016) The effects of microscopic friction and size distributions on conditional probability distributions in soft particle packings. Comp Part Mech. doi:10.1007/s40571-016-0138-z

    Google Scholar 

  21. Rapaport DC (2014) Molecular dynamics simulation: a tool for exploration and discovery using simple models. J Phys Condens Matter 26:503104–503121

    Article  Google Scholar 

  22. Kusy RP (1977) Influence of particle size ratio on the continuity of aggregates. J Appl Phys 48:5301. doi:10.1063/1.323560

    Article  Google Scholar 

  23. Deepa KS, Nisha SK, Parameswaran P, Sebastian MT, James J (2009) Effect of conductivity on filer on the percolation threshold of composites. Appl Phys Lett 94:142902

    Article  Google Scholar 

  24. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  25. Carrera D (2007) Quantum tunneling in chemical reactions. MacMillan, London

    Google Scholar 

  26. Beloborodov IS, Lopatin AV, Vinokur VM (2005) Coulomb effects and hopping transport in granular metals. Rev B 72:125121

    Article  Google Scholar 

  27. Hill RT, Mock JJ, Wolter SD, Jokest NM, Smith DR, Chilkoti A (2012) Plasmon ruler with angstrom length resolution. ACS Nano 6(10):9237–9246

    Article  Google Scholar 

  28. Kadkhodazadeh S, Wagner JB, Kneipp H, Kneipp Katrin (2013) Coexistance of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps. Appl Phys Lett 103:083103

    Article  Google Scholar 

  29. Scholl JA, Garcia-Etxarri A, Koh AL, Dionne JA (2013) Observations of quantum tunneling between two plasmonic nanoparticles. Nano Lett 13:564–569

    Article  Google Scholar 

  30. Zhang J, Shklovskii BI (2004) Density of states and conductivity of a granular metal or array of quantum dots. Phys Rev B 70:153317

    Google Scholar 

  31. Li J, Kim J-K (2007) Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatlets. Compos Sci Technol 67:2114–2120

    Article  Google Scholar 

  32. Zhu X (2013) Tutorial on Hertz contact stress. OPTI 512. https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/OPTI-521-Tutorial-on-Hertz-contact-stress-Xiaoyin-Zhu.pdf

  33. Popov V (2010) Contact mechanics and friction. Springer, Berlin. doi:10.1007/978-3-642-10803-7_5

    Book  MATH  Google Scholar 

  34. Foffi G, Goetz W, Sciortino F, Tartaglia P, Voigtmann T (2003) Mixing effects for the structural relaxation in binary hard-sphere liquids. Phys Rev Lett 91(8):085701

    Article  Google Scholar 

  35. Ottino JM, Khakhar DV (2000) Mixing and segregation of granular materials. Annu Rev Fluid Mech 32:55–91

    Article  MathSciNet  MATH  Google Scholar 

  36. Parisi G, Zamponi F (2010) Mean-field theory of hard sphere glasses and jamming. Rev Mod Phys 82:789

    Article  Google Scholar 

  37. Brouwers HJH (2006) Particle-size distribution and packing fraction of geometric random packing. Phys Rev E 74:1–14

    Google Scholar 

  38. Kansal AR, Torquato S, Stillinger FH (2002) Computer generation of dense polydisperse sphere packing. J Chem Phys 117(18):8212–8218

    Article  Google Scholar 

  39. Scott GD, Kilgour DM (1969) The density of random close packing of spheres. Br J Appl Phys 2(2):863–866

    Google Scholar 

  40. GRunlan JC, Gerberich WW, Francis LF (2001) Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J Appl Polym Sci 80:69–705

    Article  Google Scholar 

  41. Hasanabadi HM, Wilhelm M, Rodrigue D (2014) A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol Acta 5:869–882

    Article  Google Scholar 

  42. Stauffer D, Aharmony A (1994) Introduction to percolation theory, 2nd edn. Taylor and Francis, London

    Google Scholar 

  43. Eisberg R, Resnick R (1985) Quantum mechanics of atoms molecules solids nuclei and particles, 2nd edn. Wiley, London

    Google Scholar 

  44. Kruse RL (1989) Programming with data structures. Prentice Hall, Prentice

    Google Scholar 

  45. Nappini S, Magnano Elena (2015) Surface charge and coating of \(\text{CeFe}_{2}\text{O}_{4}\) nanoparticles evidence of preserved magnetic and electronic properties. J Phys Chem C 119:25529–25541

    Article  Google Scholar 

  46. Vaart K, Gajjar P, Epely-Chauvin G, Andreini N, Gray JMNT, Ancey C (2015) An underlying asymmetry within particle-size segregation. Phys Rev Lett 114:238001

    Article  Google Scholar 

  47. Royall CP, Williams SR, Ohtsuka T, Tanaka J (2008) Direct observation of a local structural mechanism for dynamic arrest. Nat Mater. doi:10.1038/nmat2219

    Google Scholar 

  48. Schilling T, Dorosz S, Radu M, Mathue M, Jungblut S, Binder K (2013) Mixtures of qnsiotropic and spherical colloids: phase behavior, confinement, percolation phenomena and kinetics. Eur Phys J Spec Top 222:3039–3052

    Article  Google Scholar 

  49. Suarez M-A, Kem N, Kob W (2009) Out-of-equilibrium dynamics of a fractal model gel. J Chem Phys 130:194904

    Article  Google Scholar 

  50. Amirjanov A, Sobolev K (2008) Optimization of a computer simulation model for packing of concrete aggregates. Part Sci Technol 26(4):380–395

    Article  Google Scholar 

  51. Puertas AM, Fuchs M, Cates ME (2004) Dynamical heterogeneities close to a colloidal gel. J Chem Phys 121(6):2813–2822

    Article  Google Scholar 

  52. Zaccarelli E, Buldyrev SV, La Nave E, Morene AJ, Saika-Voivod I, Sciortino F, Tartaglia P (2005) Model for reversible colloidal gelation. Phys Rev Lett 94:218301

    Article  Google Scholar 

  53. Rohr GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  54. Rojek J, Nosewicz S, Jursak K, Chmielewski M, Bochenek K, Pietrzak K (2015) Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure. Comp Part Mech 3:513–524

    Article  Google Scholar 

  55. Nakagawa M, Moss JL, Altobelli SA (1999) MRI measurements and granular dynamics simulation of segregation of granular mixture. In: Proceedings of fourth microgravity fluid physics and transport phenomena (NASA/CP-199902085526/SUPPL1)

Download references

Acknowledgements

The authors wish to acknowledge use of the West Virginia Super Computing System (Spruce Knob), funded by the National Science Foundation EPSCoR Research Infrastructure Improvement Cooperative Agreement No. 1003907, without access to which the study would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ever J. Barbero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbero, E.J., Bedard, A.J. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size. Comp. Part. Mech. 5, 227–238 (2018). https://doi.org/10.1007/s40571-017-0165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-017-0165-4

Keywords

Navigation