Skip to main content

Advertisement

Log in

Older cancer patients receiving radiotherapy: a systematic review for the role of sarcopenia in treatment outcomes

  • Review article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Previous studies have evaluated the prognostic effects of sarcopenia in cancer patients receiving various treatments, including chemotherapy and surgery, but few studies have focused on radiotherapy (RT).

Aims

We aimed to investigate the prevalence of sarcopenia and the relationship between sarcopenia and outcomes in older cancer patients who underwent RT without chemotherapy.

Methods

A systematic review of the literature was conducted in Pubmed/Medline and Cochrane databases in September 2021. We used the search terms and medical subject heading terms “sarcopenia,” “low muscle mass (LMM),” “low muscle strength,” “LMM and low muscle strength,” “LMM and low muscle strength and low physical performance,” and “RT.” Outcomes were overall survival (OS), progression-free survival, non-cancer death, cancer death, disease-specific survival, local failure-free survival, distant failure-free survival, and RT-related toxicities.

Results

Among 460 studies, 8 studies were eligible for inclusion. The prevalence of sarcopenia was between 42.8% and 72%. Sarcopenia was not associated with OS or OS at 3 years in seven studies in which it was defined as the presence of LMM, while it was related in one study, in which it was defined as the concomitant presence of LMM and muscle strength/function.

Discussion

There was heterogeneity between the studies because there was diversity in their inclusion criteria, definition and assessment methods used for detection of sarcopenia, considered cutoffs for low muscle mass and strength, cross-sectional locations on imaging to assess muscle mass and included covariates. The discrepancy in the results of the studies may also result from the variations in diagnoses, sample sizes, and treatment modalities. The low number of included studies and a small number of patients in each study limited generalizability.

Conclusions

Sarcopenia may be a prognostic factor, especially in OS when low muscle strength/function is integrated into its definition. We suggest that clinicians focus on muscle strength/function while considering sarcopenia and its association with cancer and RT-related outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availiability of data

The data is available from the authors upon reasonable request.

References

  1. World Population Ageing Report (2015) United Nations, Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/390)

  2. Bahat G, Erdogan T. Sarkopeni. Geriatri, Yaşlı Sağlığı ve Hastalıkları Kitabı. Erdincler UDS, Karan MA, Ulger Z (Editors). (2021)

  3. Hernandez Torres C, Hsu T (2017) Comprehensive geriatric assessment in the older adult with cancer: a review. Eur Urol Focus 3:330–339. https://doi.org/10.1016/j.euf.2017.10.010

    Article  PubMed  Google Scholar 

  4. Colloca G, Tagliaferri L, Capua BD et al (2020) Management of the elderly cancer patients complexity the radiation oncology potential. Aging Dis 11:649–657. https://doi.org/10.14336/AD.2019.0616

  5. Delaney G, Jacob S, Featherstone C et al (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137. https://doi.org/10.1002/cncr.21324.Erratum.In:Cancer.2006;107(3):660

    Article  PubMed  Google Scholar 

  6. Popescu T, Karlsson U, Vinh-Hung V et al (2019) Challenges facing radiation oncologists in the management of older cancer patients: consensus of the international geriatric radiotherapy group. Cancers (Basel) 11:371. https://doi.org/10.3390/cancers11030371

    Article  Google Scholar 

  7. Sis Çelik A (2014) Radyoterapi Sonucu Gelişen Yan Etkiler ve Hemşirelik Yaklaşımı. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi/Gümüşhane University. J Health Sci 3(3):933–947. https://dergipark.org.tr/tr/pub/gumussagbil/issue/23832/253887

  8. Wang S, Liu Y, Feng Y et al (2019) A review on curability of cancers: more efforts for novel therapeutic options are needed. Cancers (Basel) 11:1782. https://doi.org/10.3390/cancers11111782

    Article  CAS  Google Scholar 

  9. Rim CH, Yoon WS, Lee JA et al (2018) Factors predicting intolerance to definitive conventional radiotherapy in geriatric patients. Strahlenther Onkol 194:894–903. https://doi.org/10.1007/s00066-018-1318-y

    Article  PubMed  Google Scholar 

  10. Rieger KE, Hong WJ, Tusher VG et al (2004) Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc Natl Acad Sci U S A 101:6635–6640. https://doi.org/10.1073/pnas.0307761101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shachar SS, Williams GR, Muss HB et al (2016) Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur J Cancer 57:58–67. https://doi.org/10.1016/j.ejca.2015.12.030

    Article  PubMed  Google Scholar 

  12. Anjanappa M, Corden M, Green A et al (2020) Sarcopenia in cancer: Risking more than muscle loss. Tech Innov Patient Support Radiat Oncol 16:50–57. https://doi.org/10.1016/j.tipsro.2020.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taylor JM, Song A, David AR et al (2020) Impact of sarcopenia on survival in patients with early-stage lung cancer treated with stereotactic body radiation therapy. Cureus 12:e10712. https://doi.org/10.7759/cureus.10712

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hua X, Liu S, Liao JF et al (2020) When the loss costs too much: a systematic review and meta-analysis of sarcopenia in head and neck cancer. Front Oncol 9:1561. https://doi.org/10.3389/fonc.2019.01561

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dunne RF, Loh KP, Williams GR et al (2019) Cachexia and sarcopenia in older adults with cancer: a comprehensive review. Cancers (Basel) 11:1861. https://doi.org/10.3390/cancers11121861

    Article  Google Scholar 

  16. Vangelov B, Bauer J, Kotevski D et al (2021) The use of alternate vertebral levels to L3 in computed tomography scans for skeletal muscle mass evaluation and sarcopenia assessment in patients with cancer: a systematic review. Br J Nutr. https://doi.org/10.1017/S0007114521001446

    Article  PubMed  Google Scholar 

  17. Fintelmann FJ, Troschel FM, Mario J et al (2018) Thoracic skeletal muscle is associated with adverse outcomes after lobectomy for lung cancer. Ann Thorac Surg 105:1507–1515. https://doi.org/10.1016/j.athoracsur.2018.01.013

    Article  PubMed  Google Scholar 

  18. Madariaga MLL, Troschel FM, Best TD et al (2020) Low thoracic skeletal muscle area predicts morbidity after pneumonectomy for lung cancer. Ann Thorac Surg 109:907–913. https://doi.org/10.1016/j.athoracsur.2019.10.041

    Article  PubMed  Google Scholar 

  19. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65-94. https://doi.org/10.7326/0003-4819-151-4-200908180-00136

    Article  PubMed  Google Scholar 

  20. Wells G, Shea B, O'Connell D et al (2014) The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  21. Pielkenrood BJ, van Urk PR, Velden JM et al (2020) Impact of body fat distribution and sarcopenia on the overall survival in patients with spinal metastases receiving radiotherapy treatment: a prospective cohort study. Acta Oncol 59:291–297. https://doi.org/10.1080/0284186X.2019.1693059

    Article  CAS  PubMed  Google Scholar 

  22. Matsuo Y, Nagata Y, Wakabayashi M et al (2021) Impact of pre-treatment C-reactive protein level and skeletal muscle mass on outcomes after stereotactic body radiotherapy for T1N0M0 non-small cell lung cancer: a supplementary analysis of the Japan Clinical Oncology Group study JCOG0403. J Radiat Res 62:901–909. https://doi.org/10.1093/jrr/rrab065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kabarriti R, Bontempo A, Romano M et al (2018) The impact of dietary regimen compliance on outcomes for HNSCC patients treated with radiation therapy. Support Care Cancer 26:3307–3313. https://doi.org/10.1007/s00520-018-4198-x

    Article  PubMed  Google Scholar 

  24. Chargi N, Bril SI, Emmelot-Vonk MH et al (2019) Sarcopenia is a prognostic factor for overall survival in elderly patients with head-and-neck cancer. Eur Arch Otorhinolaryngol 276:1475–1486. https://doi.org/10.1007/s00405-019-05361-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shiba S, Shibuya K, Katoh H et al (2018) No Deterioration in Clinical Outcomes of Carbon Ion Radiotherapy for Sarcopenia Patients with Hepatocellular Carcinoma. Anticancer Res 38:3579–3586. https://doi.org/10.21873/anticanres.12631

    Article  CAS  PubMed  Google Scholar 

  26. Matsuo Y, Mitsuyoshi T, Shintani T et al (2018) Impact of low skeletal muscle mass on non-lung cancer mortality after stereotactic body radiotherapy for patients with stage I non-small cell lung cancer. J Geriatr Oncol 9:589–593. https://doi.org/10.1016/j.jgo.2018.05.003

    Article  PubMed  Google Scholar 

  27. Stangl-Kremser J, D’Andrea D, Vartolomei M et al (2019) Prognostic value of nutritional indices and body composition parameters including sarcopenia in patients treated with radiotherapy for urothelial carcinoma of the bladder. Urol Oncol 37:372–379. https://doi.org/10.1016/j.urolonc.2018.11.001

    Article  PubMed  Google Scholar 

  28. Prado CM, Baracos VE, McCargar LJ et al (2009) Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 15:2920–2926. https://doi.org/10.1158/1078-0432.CCR-08-2242

    Article  CAS  PubMed  Google Scholar 

  29. Prado CM, Lieffers JR, McCargar LJ et al (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 9:629–635. https://doi.org/10.1016/S1470-2045(08)70153-0

    Article  PubMed  Google Scholar 

  30. Harimoto N, Shirabe K, Yamashita YI et al (2013) Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg 100:1523–1530. https://doi.org/10.1002/bjs.9258

    Article  CAS  PubMed  Google Scholar 

  31. Parkin E, Plumb AA, O'Reilly D et al (2012) Body composition and outcome in patients undergoing resection of colorectal liver metastases (Br J Surg 2012; 99: 550–557). Br J Surg. 2012;99(7):1021–2; author reply 1022. https://doi.org/10.1002/bjs.8826

  32. Fearon K, Strasser F, Anker SD et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12:489–495. https://doi.org/10.1016/S1470-2045(10)70218-7

    Article  PubMed  Google Scholar 

  33. Wendrich AW, Swartz JE, Bril SI et al (2017) Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol 71:26–33. https://doi.org/10.1016/j.oraloncology.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  34. Jones KI, Doleman B, Scott S et al (2015) Simple psoas cross-sectional area measurement is a quick and easy method to assess sarcopenia and predicts major surgical complications. Colorectal Dis 17:O20–O26. https://doi.org/10.1111/codi.12805

    Article  CAS  PubMed  Google Scholar 

  35. Gu DH, Kim MY, Seo YS et al (2018) Clinical usefulness of psoas muscle thickness for the diagnosis of sarcopenia in patients with liver cirrhosis. Clin Mol Hepatol 24:319–330. https://doi.org/10.3350/cmh.2017.0077

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nagata Y, Hiraoka M, Shibata T et al (2015) Prospective trial of stereotactic body radiation therapy for both operable and inoperable t1n0m0 non-small cell lung cancer: japan clinical oncology group study JCOG0403. Int J Radiat Oncol Biol Phys 93:989–996. https://doi.org/10.1016/j.ijrobp.2015.07.2278

    Article  PubMed  Google Scholar 

  37. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S-991S. https://doi.org/10.1093/jn/127.5.990S

    Article  CAS  PubMed  Google Scholar 

  38. Bahat G, Tufan A, Tufan F et al (2016) Cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition. Clin Nutr 35:1557–1563. https://doi.org/10.1016/j.clnu.2016.02.002

    Article  PubMed  Google Scholar 

  39. Bahat G, Ihan B (2016) Sarcopenia and the cardiometabolic syndrome: A narrative review. European Geriatric Medicine. https://doi.org/10.1016/j.eurger.2015.12.012

    Article  Google Scholar 

  40. Arango-Lopera VE, Arroyo P, Gutiérrez-Robledo LM et al (2013) Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging 17:259–262. https://doi.org/10.1007/s12603-012-0434-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sobestiansky S, Michaelsson K, Cederholm T (2019) Sarcopenia prevalence and associations with mortality and hospitalisation by various sarcopenia definitions in 85–89 year old community-dwelling men: a report from the ULSAM study. BMC Geriatr 19:318. https://doi.org/10.1186/s12877-019-1338-1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Hai S, Liu Y et al (2019) Skeletal Muscle Mass as a Mortality Predictor among Nonagenarians and Centenarians: A Prospective Cohort Study. Sci Rep 9:2420. https://doi.org/10.1038/s41598-019-38893-0

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763. https://doi.org/10.1093/oxfordjournals.aje.a009520.Erratum.In:AmJEpidemiol1999;149(12):1161

    Article  CAS  PubMed  Google Scholar 

  44. Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(4):601. https://doi.org/10.1093/ageing/afz046. Erratum for: Age Ageing. 2019;48(1):16–31

  45. Bahat G, Tufan A, Kilic C et al (2019) Cut-off points for weight and body mass index adjusted bioimpedance analysis measurements of muscle mass. Aging Clin Exp Res 31:935–942. https://doi.org/10.1007/s40520-018-1042-6

    Article  PubMed  Google Scholar 

  46. Bahat G, Turkmen BO, Aliyev S et al (2021) Cut-off values of skeletal muscle index and psoas muscle index at L3 vertebra level by computerized tomography to assess low muscle mass. Clin Nutr S0261–5614:00020. https://doi.org/10.1016/j.clnu.2021.01.010

    Article  Google Scholar 

  47. Bahat G, Tufan A, Kilic C et al (2020) Cut-off points for height, weight and body mass index adjusted bioimpedance analysis measurements of muscle mass with use of different threshold definitions. Aging Male 23:382–387. https://doi.org/10.1080/13685538.2018.1499081

    Article  PubMed  Google Scholar 

  48. Li R, Xia J, Zhang XI et al (2018) Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc 50:458–467. https://doi.org/10.1249/MSS.0000000000001448

    Article  PubMed  PubMed Central  Google Scholar 

  49. Han P, Chen X, Yu X et al (2020) The predictive value of sarcopenia and its individual criteria for cardiovascular and all-cause mortality in suburb-dwelling older chinese. J Nutr Health Aging 24:765–771. https://doi.org/10.1007/s12603-020-1390-8

    Article  CAS  PubMed  Google Scholar 

  50. Williams GR, Chen Y, Kenzik KM et al (2020) Assessment of sarcopenia measures, survival, and disability in older adults before and after diagnosis with cancer. JAMA Netw Open 3:e204783. https://doi.org/10.1001/jamanetworkopen.2020.4783

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bahat G, Tufan A, Kilic C et al (2018) Prevalence of sarcopenia and its components in community-dwelling outpatient older adults and their relation with functionality. Aging Male. https://doi.org/10.1080/13685538.2018.1511976

  52. Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 12:249–256. https://doi.org/10.1016/j.jamda.2011.01.003

  53. Cederholm T, Barazzoni R, Austin P et al (2017) ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 36:49–64. https://doi.org/10.1016/j.clnu.2016.09.004

  54. Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558. https://doi.org/10.1093/gerona/glu010

    Article  Google Scholar 

  55. Pamoukdjian F, Bouillet T, Lévy V et al (2018) Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: A systematic review. Clin Nutr 37:1101–1113. https://doi.org/10.1016/j.clnu.2017.07.010

    Article  PubMed  Google Scholar 

  56. Fujiwara N, Nakagawa H, Kudo Y et al (2015) Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol 63:131–140. https://doi.org/10.1016/j.jhep.2015.02.031

    Article  CAS  PubMed  Google Scholar 

  57. Yip C, Goh V, Davies A et al (2014) Assessment of sarcopenia and changes in body composition after neoadjuvant chemotherapy and associations with clinical outcomes in oesophageal cancer. Eur Radiol 24:998–1005. https://doi.org/10.1007/s00330-014-3110-4

    Article  PubMed  Google Scholar 

  58. Matsuoka H, Nakamura K, Matsubara Y et al (2019) Sarcopenia Is Not a Prognostic Factor of Outcome in Patients With Cervical Cancer Undergoing Concurrent Chemoradiotherapy or Radiotherapy. Anticancer Res. 39:933–939. https://doi.org/10.21873/anticanres.13196

  59. Kilgour RD, Vigano A, Trutschnigg B et al (2013) Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. Support Care Cancer 21:3261–3270. https://doi.org/10.1007/s00520-013-1894-4

    Article  CAS  PubMed  Google Scholar 

  60. Newman AB, Kupelian V, Visser M et al (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61:72–77. https://doi.org/10.1093/gerona/61.1.72

    Article  PubMed  Google Scholar 

  61. Bahat G, Kilic C, Altinkaynak M et al (2020) Comparison of standard versus population-specific handgrip strength cut-off points in the detection of probable sarcopenia after launch of EWGSOP2. Aging Male 23:1564–1569. https://doi.org/10.1080/13685538.2020.1870038

    Article  CAS  PubMed  Google Scholar 

  62. Findlay M, White K, Lai M et al (2020) The Association Between Computed Tomography-Defined Sarcopenia and Outcomes in Adult Patients Undergoing Radiotherapy of Curative Intent for Head and Neck Cancer: A Systematic Review. J Acad Nutr Diet 120:1330-1347.e8. https://doi.org/10.1016/j.jand.2020.03.021

    Article  PubMed  Google Scholar 

  63. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 39:412–423. https://doi.org/10.1093/ageing/afq034

  64. Duan K, Gao X, Zhu D (2021) The clinical relevance and mechanism of skeletal muscle wasting. Clin Nutr 40:27–37. https://doi.org/10.1016/j.clnu.2020.07.029

    Article  CAS  PubMed  Google Scholar 

  65. Hamaguchi Y, Kaido T, Okumura S et al (2017) Impact of skeletal muscle mass index, intramuscular adipose tissue content, and visceral to subcutaneous adipose tissue area ratio on early mortality of living donor liver transplantation. Transplantation 101:565–574. https://doi.org/10.1097/TP.0000000000001587

    Article  PubMed  Google Scholar 

  66. Okumura S, Kaido T, Hamaguchi Y et al (2016) Impact of the preoperative quantity and quality of skeletal muscle on outcomes after resection of extrahepatic biliary malignancies. Surgery 159:821–833. https://doi.org/10.1016/j.surg.2015.08.047

    Article  PubMed  Google Scholar 

  67. Bahat G, Catikkas NM, Karan MA (2021) Skeletal muscle mass assessment to detect low muscle mass: regional or total? Clin Nutr. https://doi.org/10.1016/j.clnu.2021.06.014

    Article  PubMed  Google Scholar 

  68. Van der Werf A, Langius JAE, de van der Schueren MAE et al (2018) Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur J Clin Nutr. 72:288–296. https://doi.org/10.1038/s41430-017-0034-5

  69. Derstine BA, Holcombe SA, Ross BE et al (2018) Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep 8:11369. https://doi.org/10.1038/s41598-018-29825-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamaguchi Y, Kaido T, Okumura S et al (2016) Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition 32:1200–1205. https://doi.org/10.1016/j.nut.2016.04.003

    Article  PubMed  Google Scholar 

  71. Kim JS, Kim WY, Park HK et al (2017) Simple age specific cutoff value for sarcopenia evaluated by computed tomography. Ann Nutr Metab 71:157–163. https://doi.org/10.1159/000480407

    Article  CAS  PubMed  Google Scholar 

  72. Ufuk F, Herek D (2019) Reference skeletal muscle mass values at L3 Vertebrae level based on computed tomography in healthy Turkish adults. Int J Gerontol 13:221e5

  73. Hamaguchi Y, Kaido T, Okumura S et al (2018) Proposal for new selection criteria considering pre-transplant muscularity and visceral adiposity in living donor liver transplantation. J Cachexia Sarcopenia Muscle 9:246–254. https://doi.org/10.1002/jcsm.12276

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morishita S (2016) Prevalence of Sarcopenia in Cancer Patients: Review and Future Directions. International Journal of Physical Medicine & Rehabilitation. https://doi.org/10.4172/2329-9096.1000342

    Article  Google Scholar 

  75. Ganju RG, Morse R, Hoover A et al (2019) The impact of sarcopenia on tolerance of radiation and outcome in patients with head and neck cancer receiving chemoradiation. Radiother Oncol 137:117–124. https://doi.org/10.1016/j.radonc.2019.04.023

    Article  PubMed  Google Scholar 

  76. Morishita S, Kaida K, Tanaka T et al (2012) Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. Support Care Cancer 20:3161–3168. https://doi.org/10.1007/s00520-012-1460-5

    Article  PubMed  Google Scholar 

  77. Beaudart C, Zaaria M, Pasleau F et al (2017) Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLoS ONE 12:e0169548. https://doi.org/10.1371/journal.pone.0169548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huillard O, Mir O, Peyromaure M et al (2013) Sarcopenia and body mass index predict sunitinib-induced early dose-limiting toxicities in renal cancer patients. Br J Cancer 108:1034–1041. https://doi.org/10.1038/bjc.2013.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bruyère O, Beaudart C, Ethgen O et al (2019) The health economics burden of sarcopenia: a systematic review. Maturitas 119:61–69. https://doi.org/10.1016/j.maturitas.2018.11.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors certify that they comply with ethical guidelines for authorship and publishing of the Aging Clinical and Experimental Research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

NMC: conceptualization, methodology, writing—original draft preparation, writing—review and editing. ZB: writing—original draft preparation, data curation, review and editing. MMO: formal analysis, data curation. GB: conceptualization, methodology, writing—original draft preparation, writing—review a editing, supervision.

Corresponding author

Correspondence to Gulistan Bahat.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catikkas, N.M., Bahat, Z., Oren, M.M. et al. Older cancer patients receiving radiotherapy: a systematic review for the role of sarcopenia in treatment outcomes. Aging Clin Exp Res 34, 1747–1759 (2022). https://doi.org/10.1007/s40520-022-02085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-022-02085-0

Keywords

Navigation