Skip to main content

Advertisement

Log in

Impact of exercise training on muscle mitochondria modifications in older adults: a systematic review of randomized controlled trials

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Previous evidence showed that cellular aging is a multifactorial process that is associated with decline in mitochondrial function. Physical exercise has been proposed as an effective and safe therapeutical intervention to improve the mitochondria network in the adult myocytes.

Aims

The aim of this systematic review of randomized controlled trials (RCTs) was to assess the exercise-induced muscle mitochondria modifications in older adults, underlining the differences related to different exercise modalities.

Methods

On November 28th, 2021, five databases (PubMed, Scopus, Web of Science, Cochrane, and PEDro) were systematically searched for RCTs to include articles with: healthy older people as participants; physical exercise (endurance training (ET), resistance training (RT), and combined training (CT)) as intervention; other different exercise modalities or physical inactivity as comparator; mitochondrial modifications (quality, density and dynamics, oxidative, and antioxidant capacity) as outcomes. The quality assessment was performed according to the PEDro scale; the bias risk was evaluated by Cochrane risk-of-bias assessment tool.

Results

Out of 2940 records, 6 studies were included (2 assessing ET, 2 RT, 1 CT, and 1 both ET and RT). Taken together, 164 elderly subjects were included in the present systematic review. Significant positive effects were reported in terms of mitochondrial quality, density, dynamics, oxidative and antioxidant capacity, even though with different degrees according to the exercise type. The quality assessment reported one good-quality study, whereas the other five studies had a fair quality.

Discussion

The overall low quality of the studies on this topic indicate that further research is needed.

Conclusion

RT seems to be the most studied physical exercise modality improving mitochondrial density and dynamics, while ET have been related to mitochondrial antioxidant capacity improvements. However, these exercise-induced specific effects should be better explored in older people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ukraintseva S, Arbeev K, Duan M et al (2021) Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 194:111418. https://doi.org/10.1016/j.mad.2020.111418

    Article  CAS  PubMed  Google Scholar 

  2. Leigheb M, de Sire A, Colangelo M et al (2021) Sarcopenia diagnosis: reliability of the ultrasound assessment of the tibialis anterior muscle as an alternative evaluation tool. Diagnostics (Basel) 11:2158. https://doi.org/10.3390/diagnostics11112158

    Article  Google Scholar 

  3. Calcinotto A, Kohli J, Zagato E et al (2019) Cellular senescence: aging, cancer, and injury. Physiol Rev 99:1047–1078. https://doi.org/10.1152/physrev.00020.2018

    Article  CAS  PubMed  Google Scholar 

  4. Kubben N, Misteli T (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18:595–609. https://doi.org/10.1038/nrm.2017.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herbst A, Lee CC, Vandiver AR et al (2021) Mitochondrial DNA deletion mutations increase exponentially with age in human skeletal muscle. Aging Clin Exp Res 33:1811–1820. https://doi.org/10.1007/s40520-020-01698-7

    Article  PubMed  Google Scholar 

  6. Lefkimmiatis K, Grisan F, Iannucci LF et al (2021) Mitochondrial communication in the context of aging. Aging Clin Exp Res 33:1367–1370. https://doi.org/10.1007/s40520-019-01451-9

    Article  PubMed  Google Scholar 

  7. Corti C, Sajjadi E, Fusco N (2019) Determination of mismatch repair status in human cancer and its clinical significance: Does one size fit all? Adv Anat Pathol 26:270–279. https://doi.org/10.1097/PAP.0000000000000234

    Article  PubMed  Google Scholar 

  8. Sajjadi E, Venetis K, Scatena C et al (2020) Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 14:1150. https://doi.org/10.3332/ecancer.2020.1150

    Article  PubMed  PubMed Central  Google Scholar 

  9. Petkovic M, O’Brien CE, Jan YN (2021) Interorganelle communication, aging, and neurodegeneration. Genes Dev 35:449–469. https://doi.org/10.1101/gad.346759.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boengler K, Kosiol M, Mayr M et al (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8:349–369. https://doi.org/10.1002/jcsm.12178

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25:57–71. https://doi.org/10.1016/j.cmet.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  12. Franceschi C, Garagnani P, Vitale G et al (2017) Inflammaging and “Garb-aging.” Trends Endocrinol Metab 28:199–212. https://doi.org/10.1016/j.tem.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  13. López-Otín C, Galluzzi L, Freije JMP et al (2016) Metabolic control of longevity. Cell 166:802–821. https://doi.org/10.1016/j.cell.2016.07.031

    Article  CAS  PubMed  Google Scholar 

  14. Invernizzi M, de Sire A, Fusco N (2021) Rethinking the clinical management of volumetric muscle loss in patients with spinal cord injury: Synergy among nutritional supplementation, pharmacotherapy, and rehabilitation. Curr Opin Pharmacol 57:132–139. https://doi.org/10.1016/j.coph.2021.02.003

    Article  CAS  PubMed  Google Scholar 

  15. Pagni F, Guerini-Rocco E, Schultheis AM et al (2019) Targeting immune-related biological processes in solid tumors: we do need biomarkers. Int J Mol Sci 20:5452. https://doi.org/10.3390/ijms20215452

    Article  CAS  PubMed Central  Google Scholar 

  16. Pimentel AE, Gentile CL, Tanaka H et al (2003) Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J Appl Physiol (1985) 94:2406–2413. https://doi.org/10.1152/japplphysiol.00774.2002

    Article  Google Scholar 

  17. Tanaka H, Desouza CA, Jones PP et al (1997) Greater rate of decline in maximal aerobic capacity with age in physically active vs. sedentary healthy women. J Appl Physiol (1985) 83:1947–1953. https://doi.org/10.1152/jappl.1997.83.6.1947

    Article  CAS  Google Scholar 

  18. Invernizzi M, Carda S, Cisari C et al (2014) Possible synergism of physical exercise and ghrelin-agonists in patients with cachexia associated with chronic heart failure. Aging Clin Exp Res 26:341–351. https://doi.org/10.1007/s40520-013-0186-7

    Article  CAS  PubMed  Google Scholar 

  19. Casoli T, Lisa R, Fabbietti P et al (2020) Analysis of mitochondrial DNA allelic changes in Parkinson’s disease: a preliminary study. Aging Clin Exp Res 32:345–349. https://doi.org/10.1007/s40520-019-01197-4

    Article  PubMed  Google Scholar 

  20. Nilsson MI, Tarnopolsky MA (2019) Mitochondria and aging-the role of exercise as a countermeasure. Biology (Basel) 8:40. https://doi.org/10.3390/biology8020040

    Article  CAS  Google Scholar 

  21. de Sire A, Lippi L, Curci C et al (2021) Effectiveness of combined treatment using physical exercise and ultrasound-guided radiofrequency ablation of genicular nerves in patients with knee osteoarthritis. Appl Sci 11:4338. https://doi.org/10.3390/app11104338

    Article  CAS  Google Scholar 

  22. de Sire A, Marotta N, Marinaro C et al (2021) Role of physical exercise and nutraceuticals in modulating molecular pathways of osteoarthritis. Int J Mol Sci 22:5722. https://doi.org/10.3390/ijms22115722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Sire A, Agostini F, Lippi L et al (2021) Oxygen-ozone therapy in the rehabilitation field: state of the art on mechanisms of action, safety and effectiveness in patients with musculoskeletal disorders. Biomolecules 11:356. https://doi.org/10.3390/biom11030356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Sire A, Stagno D, Minetto MA et al (2020) Long-term effects of intra-articular oxygen-ozone therapy versus hyaluronic acid in older people affected by knee osteoarthritis: A randomized single-blind extension study. J Back Musculoskelet Rehabil 33:347–354. https://doi.org/10.3233/BMR-181294.

    Article  Google Scholar 

  25. Muñoz-Carvajal F, Sanhueza M (2020) The mitochondrial unfolded protein response: a hinge between healthy and pathological aging. Front Aging Neurosci 12:581849. https://doi.org/10.3389/fnagi.2020.581849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iorio GC, Ammendolia A, Marotta N et al (2021) A bond between rheumatic diseases and cancer in the elderly: the interleukin-6 pathway. Int J Rheum Dis 24:1317–1320. https://doi.org/10.1111/1756-185X.14194

    Article  CAS  PubMed  Google Scholar 

  27. Huertas JR, Al Fazazi S, Hidalgo-Gutierrez A et al (2017) Antioxidant effect of exercise: exploring the role of the mitochondrial complex I superassembly. Redox Biol 13:477–481. https://doi.org/10.1016/j.redox.2017.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Picard M, Gentil BJ, McManus MJ et al (2013) Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J Appl Physiol (1985) 115:1562–1571. https://doi.org/10.1152/japplphysiol.00819.2013

    Article  CAS  Google Scholar 

  29. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  30. WHO, Geneva: Switzerland (2010) World Health Organisation. Definition of an older or elderly person. http://www.who.int/healthinfo/survey/ageingdefnolder/en/index.html. Accessed 12/11/2013

  31. Estébanez B, Moreira OC, Almar M et al (2019) Effects of a resistance-training programme on endoplasmic reticulum unfolded protein response and mitochondrial functions in PBMCs from elderly subjects. Eur J Sport Sci 19:931–940. https://doi.org/10.1080/17461391.2018.1561950

    Article  PubMed  Google Scholar 

  32. Frank P, Andersson E, Pontén M et al (2016) Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scand J Med Sci Sports 26:764–773. https://doi.org/10.1111/sms.12537

    Article  CAS  PubMed  Google Scholar 

  33. Irving BA, Lanza IR, Henderson GC et al (2015) Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab 100:1654–1663. https://doi.org/10.1210/jc.2014-3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson ML, Irving BA, Lanza IR et al (2015) Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging. J Gerontol A Biol Sci Med Sci 70:1386–1393. https://doi.org/10.1093/gerona/glu221

    Article  CAS  PubMed  Google Scholar 

  35. Short KR, Vittone JL, Bigelow ML et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896. https://doi.org/10.2337/diabetes.52.8.1888

    Article  CAS  PubMed  Google Scholar 

  36. Jubrias SA, Esselman PC, Price LB et al (2001) Large energetic adaptations of elderly muscle to resistance and endurance training. J Appl Physiol (1985) 90:1663–1670. https://doi.org/10.1152/jappl.2001.90.5.1663

    Article  CAS  Google Scholar 

  37. Ruas JL, White JP, Rao RR et al (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151:1319–1331. https://doi.org/10.1016/j.cell.2012.10.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Konopka AR, Suer MK, Wolff CA et al (2014) Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci 69:371–378. https://doi.org/10.1093/gerona/glt107

    Article  CAS  PubMed  Google Scholar 

  39. Ling C, Poulsen P, Carlsson E et al (2004) Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J Clin Invest 114:1518–1526. https://doi.org/10.1172/JCI21889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chabi B, Ljubicic V, Menzies KJ et al (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7:2–12. https://doi.org/10.1111/j.1474-9726.2007.00347.x

    Article  CAS  PubMed  Google Scholar 

  41. Zahn JM, Sonu R, Vogel H et al (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2:e115. https://doi.org/10.1371/journal.pgen.0020115.eor

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brault JJ, Jespersen JG, Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285:19460–19471. https://doi.org/10.1074/jbc.M110.113092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandri M, Lin J, Handschin C et al (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103:16260–16265. https://doi.org/10.1073/pnas.0607795103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnston AP, De Lisio M, Parise G (2008) Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab 33:191–199. https://doi.org/10.1139/H07-141

    Article  CAS  PubMed  Google Scholar 

  45. Kim Y, Triolo M, Hood DA (2017) Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid Med Cell Longev 2017:3165396. https://doi.org/10.1155/2017/3165396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iqbal S, Ostojic O, Singh K et al (2013) Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle Nerve 48:963–970. https://doi.org/10.1002/mus.23838

    Article  CAS  PubMed  Google Scholar 

  47. Joseph AM, Adhihetty PJ, Buford TW et al (2012) The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell 11:801–809. https://doi.org/10.1111/j.1474-9726.2012.00844.x

    Article  CAS  PubMed  Google Scholar 

  48. AlGhatrif M, Zane A, Oberdier M et al (2017) Lower mitochondrial energy production of the thigh muscles in patients with low-normal ankle-brachial index. J Am Heart Assoc 6:e006604. https://doi.org/10.1161/JAHA.117.006604

    Article  PubMed  PubMed Central  Google Scholar 

  49. Choi S, Reiter DA, Shardell M et al (2016) 31P Magnetic resonance spectroscopy assessment of muscle bioenergetics as a predictor of gait speed in the baltimore longitudinal study of aging. J Gerontol A Biol Sci Med Sci 71:1638–1645. https://doi.org/10.1093/gerona/glw059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sparks LM, Johannsen NM, Church TS et al (2013) Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J Clin Endocrinol Metab 98:1694–1702. https://doi.org/10.1210/jc.2012-3874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bartlett MF, Miehm JD, Fitzgerald LF et al (2017) Do changes in mitochondrial quality contribute to increases in skeletal muscle oxidative capacity following endurance training? J Physiol 595:1861–1862. https://doi.org/10.1113/JP273809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mesquita PHC, Lamb DA, Godwin JS et al (2021) Effects of resistance training on the redox status of skeletal muscle in older adults. Antioxidants (Basel) 10:350. https://doi.org/10.3390/antiox10030350

    Article  CAS  Google Scholar 

  53. Jing E, O’Neill BT, Rardin MJ et al (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62:3404–3417. https://doi.org/10.2337/db12-1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lantier L, Williams AS, Williams IM et al (2015) SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice. Diabetes 64:3081–3092. https://doi.org/10.2337/db14-1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin L, Chen K, Abdel Khalek W et al (2014) Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS One 9:e85636. https://doi.org/10.1371/journal.pone.0085636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was not funded.

Author information

Authors and Affiliations

Authors

Contributions

Study design and conceptualization: LL, AdS, and MI; Database searching: LL, AdS, MI; Data screening: LL, AdS, MI; Data extraction LL, AdS, MI; Data synthesis and interpretation: LL, AdS, MI; Manuscript drafting: LL, AdS; Critical revision: NF, MI; Visualization: KM, CC, LP, AT, SA, AA; Study supervision: AdS, MI; Study submission: AdS. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Alessandro de Sire.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Statement of human and animals rights

This review reports no participant data or original research findings that require ethics approval.

Consent to participate

For this type of study, formal consent is not required.

Consent for publication

All the authors declare that they give their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lippi, L., de Sire, A., Mezian, K. et al. Impact of exercise training on muscle mitochondria modifications in older adults: a systematic review of randomized controlled trials. Aging Clin Exp Res 34, 1495–1510 (2022). https://doi.org/10.1007/s40520-021-02073-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-021-02073-w

Keywords

Navigation