Skip to main content

Advertisement

Log in

Telomere length in patients with osteoarthritis: a systematic review and meta-analysis

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Telomere length (TL) as a biomarker of aging was associated with many age-related diseases. The relationship between TL and osteoarthritis (OA), the most common form of joint diseases, had been investigated in a number of studies, but with the result inconsistent.

Aims

The purpose of this study was to systematically evaluate the relationship between TL and OA.

Methods

Until January 1, 2021, PubMed, Web of Science and Cochrane Library were comprehensively retrieved for relevant literatures. Quality of included literature was assessed using the Newcastle–Ottawa Scale (NOS) assessment scale. The pooled standard mean difference (SMD) with 95% confidence interval (CI) of Leukocytes TL was calculated using random-effect model. Subgroup analysis and meta-regression were used to investigate the potential source of heterogeneity.

Results

Six original studies containing 678 OA patients and 1457 healthy controls were included in this meta-analysis. All six included studies were case–control designed. Pooled results showed that patients with OA had a shorter TL in peripheral blood leukocytes (PBLs) compared with healthy controls, (SMD = − 0.32, 95% CI − 0.57 to − 0.06, Z = − 2.45, P = 0.014). Subgroup and meta-regression analysis showed that sex ratio and body mass index (BMI) were possible sources of heterogeneity. Publication bias was not observed.

Conclusion

The TL of PBLs in patients with OA was shorter than that of healthy controls, suggesting that PBLs TL may be closely associated with the pathogenesis and progression of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dieppe PA, Lohmander LS (2005) Pathogenesis and management of pain in osteoarthritis. Lancet 365:965–973. https://doi.org/10.1016/s0140-6736(05)71086-2

    Article  CAS  PubMed  Google Scholar 

  2. Kassebaum NJ, Arora M, Barber RM et al (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1603–1658. https://doi.org/10.1016/s0140-6736(16)31460-x

    Article  Google Scholar 

  3. Murphy L, Schwartz TA, Helmick CG et al (2008) Lifetime risk of symptomatic knee osteoarthritis. Arthr Rheum 59:1207–1213. https://doi.org/10.1002/art.24021

    Article  Google Scholar 

  4. Neogi T (2013) The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil 21:1145–1153. https://doi.org/10.1016/j.joca.2013.03.018

    Article  CAS  Google Scholar 

  5. Wang Y, Teichtahl AJ, Cicuttini FM (2016) Osteoarthritis year in review 2015: imaging. Osteoarthr Cartil 24:49–57. https://doi.org/10.1016/j.joca.2015.07.027

    Article  CAS  Google Scholar 

  6. Lotz M, Loeser RF (2012) Effects of aging on articular cartilage homeostasis. Bone 51:241–248. https://doi.org/10.1016/j.bone.2012.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McAlindon T, Roberts M, Driban J et al (2018) Incident hand OA is strongly associated with reduced peripheral blood leukocyte telomere length. Osteoarthr Cartil 26:1651–1657. https://doi.org/10.1016/j.joca.2018.08.010

    Article  CAS  Google Scholar 

  9. Mosquera A, Rego-Pérez I, Blanco FJ et al (2019) Leukocyte telomere length in patients with radiographic knee osteoarthritis. Environ Mol Mutagen 60:298–301. https://doi.org/10.1002/em.22247

    Article  CAS  PubMed  Google Scholar 

  10. Udomsinprasert W, Poovorawan Y, Chongsrisawat V et al (2019) Leukocyte mitochondrial DNA copy number as a potential biomarker indicating poor outcome in biliary atresia and its association with oxidative DNA damage and telomere length. Mitochondrion 47:1–9. https://doi.org/10.1016/j.mito.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Blackburn EH (1984) The molecular structure of centromeres and telomeres. Annu Rev Biochem 53:163–194. https://doi.org/10.1146/annurev.bi.53.070184.001115

    Article  CAS  PubMed  Google Scholar 

  12. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198. https://doi.org/10.1126/science.aab3389

    Article  CAS  PubMed  Google Scholar 

  13. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. https://doi.org/10.1101/gad.1346005

    Article  CAS  PubMed  Google Scholar 

  14. Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14:69–82. https://doi.org/10.1038/nrm3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffith JD, Comeau L, Rosenfield S et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514. https://doi.org/10.1016/s0092-8674(00)80760-6

    Article  CAS  PubMed  Google Scholar 

  16. Shay JW (2016) Role of telomeres and telomerase in aging and cancer. Cancer Discov 6:584–593. https://doi.org/10.1158/2159-8290.cd-16-0062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watanabe S, Kawamoto S, Ohtani N et al (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108:563–569. https://doi.org/10.1111/cas.13184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin JA, Buckwalter JA (2001) Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A 56:B172–B179. https://doi.org/10.1093/gerona/56.4.b172

    Article  CAS  Google Scholar 

  19. Takubo K, Aida J, Izumiyama-Shimomura N et al (2010) Changes of telomere length with aging. Geriatr Gerontol Int 10:S197-206. https://doi.org/10.1111/j.1447-0594.2010.00605.x (Suppl 1)

    Article  PubMed  Google Scholar 

  20. Demanelis K, Jasmine F, Chen LS et al (2020) Determinants of telomere length across human tissues. Science. https://doi.org/10.1126/science.aaz6876

    Article  PubMed  PubMed Central  Google Scholar 

  21. Daniali L, Benetos A, Susser E et al (2013) Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 4:1597. https://doi.org/10.1038/ncomms2602

    Article  CAS  PubMed  Google Scholar 

  22. Haycock PC, Heydon EE, Kaptoge S et al (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 349:g4227. https://doi.org/10.1136/bmj.g4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forero DA, González-Giraldo Y, López-Quintero C et al (2016) Meta-analysis of telomere length in Alzheimer’s disease. J Gerontol A 71:1069–1073. https://doi.org/10.1093/gerona/glw053

    Article  Google Scholar 

  24. Willeit P, Raschenberger J, Heydon EE et al (2014) Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS ONE 9:e112483. https://doi.org/10.1371/journal.pone.0112483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamayo M, Pértega S, Mosquera A et al (2014) Individual telomere length decay in patients with spondyloarthritis. Mutat Res 765:1–5. https://doi.org/10.1016/j.mrfmmm.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  26. Zeng Z, Zhang W, Qian Y et al (2020) Association of telomere length with risk of rheumatoid arthritis: a meta-analysis and Mendelian randomization. Rheumatology (Oxford) 59:940–947. https://doi.org/10.1093/rheumatology/kez524

    Article  CAS  Google Scholar 

  27. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012. https://doi.org/10.1001/jama.283.15.2008

    Article  CAS  PubMed  Google Scholar 

  29. Wells G, Shea B, O’Connell D et al (2011) The Newcastle–Ottawa Scale (NOS) for assessing the quality of case–control studies in meta-analyses. Eur J Epidemiol 25:603–605

    Google Scholar 

  30. Borenstein M, Hedges LV, Higgins JP et al (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1:97–111. https://doi.org/10.1002/jrsm.12

    Article  PubMed  Google Scholar 

  31. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhai G, Aviv A, Hunter DJ et al (2006) Reduction of leucocyte telomere length in radiographic hand osteoarthritis: a population-based study. Ann Rheum Dis 65:1444–1448. https://doi.org/10.1136/ard.2006.056903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fernández-Moreno M, Tamayo M, Soto-Hermida A et al (2011) mtDNA haplogroup J modulates telomere length and nitric oxide production. BMC Musculoskelet Disord 12:283. https://doi.org/10.1186/1471-2474-12-283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manoy P, Yuktanandana P, Tanavalee A et al (2020) Telomere shortening is associated with poor physical performance in knee osteoarthritis. Biomed Rep 13:27. https://doi.org/10.3892/br.2020.1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poonpet T, Saetan N, Tanavalee A et al (2018) Association between leukocyte telomere length and angiogenic cytokines in knee osteoarthritis. Int J Rheum Dis 21:118–125. https://doi.org/10.1111/1756-185x.12988

    Article  CAS  PubMed  Google Scholar 

  36. Tamayo M, Mosquera A, Rego JI et al (2010) Differing patterns of peripheral blood leukocyte telomere length in rheumatologic diseases. Mutat Res 683:68–73. https://doi.org/10.1016/j.mrfmmm.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  37. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. https://doi.org/10.1016/j.cell.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  38. Burton DG, Sheerin AN, Ostler EL et al (2007) Cyclin D1 overexpression permits the reproducible detection of senescent human vascular smooth muscle cells. Ann NY Acad Sci 1119:20–31. https://doi.org/10.1196/annals.1404.026

    Article  CAS  PubMed  Google Scholar 

  39. Philipot D, Guérit D, Platano D et al (2014) p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther 16:R58. https://doi.org/10.1186/ar4494

    Article  PubMed  PubMed Central  Google Scholar 

  40. Neuhold LA, Killar L, Zhao W et al (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 107:35–44. https://doi.org/10.1172/jci10564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pfander D, Körtje D, Zimmermann R et al (2001) Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis 60:1070–1073. https://doi.org/10.1136/ard.60.11.1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hashimoto S, Creighton-Achermann L, Takahashi K et al (2002) Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 10:180–187. https://doi.org/10.1053/joca.2001.0505

    Article  CAS  Google Scholar 

  43. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. https://doi.org/10.1016/s0968-0004(02)02110-2

    Article  Google Scholar 

  44. Pelletier JP, Martel-Pelletier J, Abramson SB (2001) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 44:1237–1247. https://doi.org/10.1002/1529-0131(200106)44:6%3c1237::aid-art214%3e3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  45. Gobezie R, Kho A, Krastins B et al (2007) High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther 9:R36. https://doi.org/10.1186/ar2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sohn DH, Sokolove J, Sharpe O et al (2012) Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthr Res Ther 14:R7. https://doi.org/10.1186/ar3555

    Article  CAS  Google Scholar 

  47. Yanagisawa A, Ueda M, Sueyoshi T et al (2016) Knee osteoarthritis associated with different kinds of amyloid deposits and the impact of aging on type of amyloid. Amyloid 23:26–32. https://doi.org/10.3109/13506129.2015.1115758

    Article  CAS  PubMed  Google Scholar 

  48. Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 1862:576–591. https://doi.org/10.1016/j.bbadis.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  49. Yudoh K, van Nguyen T, Nakamura H et al (2005) Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthr Res Ther 7:R380–R391. https://doi.org/10.1186/ar1499

    Article  CAS  Google Scholar 

  50. Yermilov V, Rubio J, Ohshima H (1995) Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 376:207–210. https://doi.org/10.1016/0014-5793(95)01281-6

    Article  CAS  PubMed  Google Scholar 

  51. Lai TP, Wright WE, Shay JW (2018) Comparison of telomere length measurement methods. Philos Trans R Soc Lond B. https://doi.org/10.1098/rstb.2016.0451

    Article  Google Scholar 

  52. Deng MW, Wei SJ, Yew TL et al (2015) Cell therapy with G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant 24:1085–1096. https://doi.org/10.3727/096368914x680091

    Article  PubMed  Google Scholar 

  53. Grumbles RM, Howell DS, Wenger L et al (1996) Hepatocyte growth factor and its actions in growth plate chondrocytes. Bone 19:255–261. https://doi.org/10.1016/8756-3282(96)00180-9

    Article  CAS  PubMed  Google Scholar 

  54. Murata M, Yudoh K, Masuko K (2008) The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthr Cartil 16:279–286. https://doi.org/10.1016/j.joca.2007.09.003

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China [81773514, 82073655] and the funds for academic and technical leaders in Anhui province [2017D140].

Author information

Authors and Affiliations

Authors

Contributions

Corresponding author FP came up with the idea and he is guarantor. Authors JK, FW and TZ performed the literature search. Author MS was responsible for statistical analysis. Authors HX and YM wrote the first draft of the article. Authors SX and GC modified the manuscript. All authors reviewed the paper and approved the final version. All authors agree to be accountable for the work and to ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved.

Corresponding author

Correspondence to Faming Pan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

For this type of study, ethics approval is not required.

Consent to participate

Not required.

Consent for publication

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 193 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Ma, Y., Shao, M. et al. Telomere length in patients with osteoarthritis: a systematic review and meta-analysis. Aging Clin Exp Res 34, 495–503 (2022). https://doi.org/10.1007/s40520-021-01944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-021-01944-6

Keywords

Navigation