Skip to main content

Advertisement

Log in

Lower serum levels of IL-13 is associated with increased carotid intima-media thickness in old age subjects

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Cardiovascular diseases due to atherosclerosis represent the major cause of disability and mortality in old age subjects. The atherosclerotic process is linked to a low grade of systemic inflammation with the involvement of many cytokines and inflammatory proteins. Among them, evidence from animal studies suggests that IL-13 has a protective property. However, the role of IL-13 in the pathogenesis of atherosclerosis in humans is still unknown.

Aims

With this study, we aim to investigate a potential association between IL-13 and carotid intima-media thickness (IMT) in old age subjects.

Methods

This is a retrospective study conducted among 79 old age subjects (over 75 years old). All subjects underwent IMT assessment by high-resolution B-mode ultrasonography and IL-13 measurement in serum by ELISA.

Results

Subjects (41 M/38F) had a mean age of 81.0 ± 4.5 years and were mostly overweight. Stratifying the whole cohort by IMT thickness (IMT ≤ 0.9, n = 17; IMT ≥ 1 and ≤ 1.3, n = 50; IMT ≥ 1.4, n = 12) among the main variables explored, only BMI and triglycerides differed among groups, having subjects with higher IMT significantly higher BMI and lower triglycerides. Serum IL-13 levels significantly differed among groups having subjects with IMT ≥ 1.4 lower levels as compared to other groups (p < 0.0001). In all sample population, IMT values significantly correlate with IL-13 levels (r = − 0.454, p < 0.0001). Indeed, a linear regression analysis showed that independent of age, gender, body mass index, triglycerides, systolic blood pressure, statin use and smoking habit, lower IL-13 serum levels were associated with higher IMT values.

Conclusions

IL-13, an anti-inflammatory cytokine, may have a protective role in the human atherosclerotic process. It could be used as an effective and promising novel therapeutic target development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yeates K, Lohfeld L, Sleeth J et al (2015) A global perspective on cardiovascular disease in vulnerable populations. Can J Cardiol 31:1081. https://doi.org/10.1016/J.CJCA.2015.06.035

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695. https://doi.org/10.1056/NEJMra043430

    Article  CAS  PubMed  Google Scholar 

  3. Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805

    Article  CAS  Google Scholar 

  4. Frostegård J, Ulfgren A-K, Nyberg P et al (1999) Cytokine expression in advanced human atherosclerotic plaques: the dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145:33–43. https://doi.org/10.1016/S0021-9150(99)00011-8

    Article  PubMed  Google Scholar 

  5. Cardilo-Reis L, Gruber S, Schreier SM et al (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4:1072–1086. https://doi.org/10.1002/emmm.201201374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minty A, Chalon P, Derocq J-M et al (1993) Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362:248–250. https://doi.org/10.1038/362248a0

    Article  CAS  PubMed  Google Scholar 

  7. Darkhal P, Gao M, Ma Y et al (2015) Blocking high-fat-diet-induced obesity, insulin resistance and fatty liver by overexpression of Il-13 gene in mice. Int J Obes 39:1292–1299. https://doi.org/10.1038/ijo.2015.52

    Article  CAS  Google Scholar 

  8. Nair SB, Malik R, Khattar RS (2012) Carotid intima-media thickness: ultrasound measurement, prognostic value and role in clinical practice. Postgrad Med J 88:694–699. https://doi.org/10.1136/postgradmedj-2011-130214

    Article  PubMed  Google Scholar 

  9. van den Oord SCH, Sijbrands EJG, ten Kate GL et al (2013) Carotid intima-media thickness for cardiovascular risk assessment: Systematic review and meta-analysis. Atherosclerosis 228:1–11. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2013.01.025

    Article  PubMed  Google Scholar 

  10. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”; a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  Google Scholar 

  11. Katz S, Ab Ford, Rw Moskowitz et al (1963) Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA 185:914–919

    Article  CAS  Google Scholar 

  12. Graf C (2008) The lawton instrumental activities of daily living scale. AJN, Am J Nurs 108:52–62. https://doi.org/10.1097/01.NAJ.0000314810.46029.74

    Article  PubMed  Google Scholar 

  13. Ravani A, Werba JP, Frigerio B et al (2015) Assessment and relevance of carotid intima-media thickness (C-IMT) in primary and secondary cardiovascular prevention. Curr Pharm Des 21:1164–1171. https://doi.org/10.2174/1381612820666141013121545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874. https://doi.org/10.1038/nature01323

    Article  CAS  PubMed  Google Scholar 

  16. Zhu J (2015) T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 75:14–24. https://doi.org/10.1016/j.cyto.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doran E, Cai F, Holweg CTJ et al (2017) Interleukin-13 in asthma and other eosinophilic disorders. Front Med 4:139. https://doi.org/10.3389/fmed.2017.00139

    Article  Google Scholar 

  18. Martínez-Reyes CP, Gómez-Arauz AY, Torres-Castro I et al (2018) Serum levels of interleukin-13 increase in subjects with insulin resistance but do not correlate with markers of low-grade systemic inflammation. J Diabetes Res 2018:1–11. https://doi.org/10.1155/2018/7209872

    Article  CAS  Google Scholar 

  19. Madhumitha H, Mohan V, Deepa M et al (2014) Increased Th1 and suppressed Th2 serum cytokine levels in subjects with diabetic coronary artery disease. Cardiovasc Diabetol 13:1. https://doi.org/10.1186/1475-2840-13-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cardilo-Reis L, Gruber S, Schreier SM et al (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4:1072. https://doi.org/10.1002/EMMM.201201374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bäck M, Hansson GK (2015) Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol 12:199–211. https://doi.org/10.1038/nrcardio.2015.5

    Article  CAS  PubMed  Google Scholar 

  22. Everett BM, Pradhan AD, Solomon DH et al (2013) Rationale and design of the cardiovascular inflammation reduction trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J 166:199–207. https://doi.org/10.1016/j.ahj.2013.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ridker PM, Thuren T, Zalewski A et al (2011) Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Am Heart J 162:597–605. https://doi.org/10.1016/j.ahj.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  24. Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by Fondazione Cassa di Risparmio di Perugia (cod: 2017.0278.021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Boccardi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Statement of human and animal rights

The study is carried in accordance with the 1964 Helsinki Declaration and its later amendments and with the ethical standards of the institutional ethics committee, and was approved by the ethics committee of the University of Perugia, Perugia, Italy (INFStudy, Registry CEAS N: 3097/17).

Informed consent

All subjects provided written informed consent to participate in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccardi, V., Paolacci, L., Croce, M.F. et al. Lower serum levels of IL-13 is associated with increased carotid intima-media thickness in old age subjects. Aging Clin Exp Res 32, 1289–1294 (2020). https://doi.org/10.1007/s40520-019-01313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-019-01313-4

Keywords

Navigation