Skip to main content
Log in

Sicilian centenarian offspring are more resistant to immune ageing

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Immunosenescence constitutes a major indirect cause of morbidity and mortality in the elderly. Previous analysis of immune signatures in a cohort of centenarian offspring showed an intermediate immunophenotype between age-matched and younger controls.

Aims

To confirm and extend the previous studies performing further phenotypical analysis in centenarian offspring and controls.

Methods

Analysis of Treg cells, γδ T cells, mucosal-associated invariant T cells, and senescent immune T cells was performed in centenarian offspring and controls.

Results

We report significant differences between elderly and centenarian offspring in most of the studied subsets, showing that centenarian offspring subsets present an intermediate phenotyping between elderly and younger people.

Conclusion

The whole present data confirm and extend the previous results showing that centenarian offspring retain more youthful immunological parameters and that the exhaustion of the immune system is less evident than in elderly without centenarian parents, though further investigations are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Passarino G, De Rango F, Montesanto A (2016) Human longevity: Genetics or Lifestyle? It takes two to tango. Immun Ageing 13:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Puca AA, Spinelli C, Accardi G et al (2017) Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing. Mech Ageing Dev. https://doi.org/10.1016/j.mad.2017.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Caruso C, Passarino G, Puca A et al (2012) “Positive biology”: the centenarian lesson. Immun Ageing 9:5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sansoni P, Vescovini R, Fagnoni F et al (2008) The immune system in extreme longevity. Exp Gerontol 43:61–65

    Article  CAS  Google Scholar 

  5. Salvioli S, Monti D, Lanzarini C et al (2013) Immune system, cell senescence, aging and longevity–inflamm-aging reappraised. Curr Pharm Des 19:1675–1679

    CAS  PubMed  Google Scholar 

  6. Castelo-Branco C, Soveral I (2014) The immune system and aging: a review. Gynecol Endocrinol 30:16–22

    Article  CAS  PubMed  Google Scholar 

  7. Oxford KL, Dela Pena-Ponce MG, Jensen K et al (2015) The interplay between immune maturation, age, chronic viral infection and environment. Immun Ageing 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grasse M, Meryk A, Schirmer M et al (2016) Booster vaccination against tetanus and diphtheria: insufficient protection against diphtheria in young and elderly adults. Immun Ageing 13:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pawelec G (2012) Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing 9:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubino G (2015) Complex liaisons moving forward the Parkinson’s disease? an appraisal. Basal Ganglia 5:77–87

    Article  Google Scholar 

  11. Deleidi M, Jäggle M, Rubino G (2015) Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 9:172

    Article  PubMed  PubMed Central  Google Scholar 

  12. Franceschi C, Bonafè M, Valensin S et al (2000) Inflamm-aging an evolutionary perspective on immunosenescence Ann. N Y Acad Sci 908:244–254

    Article  CAS  Google Scholar 

  13. Lu Y, Tan CT, Nyunt MS et al (2016) Inflammatory and immune markers associated with physical frailty syndrome: findings from Singapore longitudinal aging studies. Oncotarget 7:28783–28795

    PubMed  PubMed Central  Google Scholar 

  14. Solana R, Campos C, Pera A et al (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61

    Article  CAS  PubMed  Google Scholar 

  15. Pellicano M, Buffa S, Goldeck D et al (2014) Evidence for less marked potential signs of T-cell immunosenescence in centenarian offspring than in the general age-matched population. J Gerontol A BiolSci Med Sci 69:495–504

    Article  CAS  Google Scholar 

  16. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  CAS  PubMed  Google Scholar 

  17. Vasto S, Rizzo C, Caruso C (2012) Centenarians and diet: what they eat in the Western part of Sicily. Immun Ageing 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  18. Balistreri CR, Candore G, Accardi G et al (2014) Centenarian offspring: a model for understandinglongevity. Curr Vasc Pharmacol 12:718–725

    Article  CAS  PubMed  Google Scholar 

  19. Bucci L, Ostan R, Cevenini E et al (2016) Centenarians’ offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging (Albany NY) 8:510–519

    Article  Google Scholar 

  20. Simone R, Zicca A, Saverino D (2008) The frequency of regulatory CD3+ CD8+ CD28− CD25+ T lymphocytes in human peripheral blood increases with age. J Leukoc Biol 84:1454–1461

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Xie Y, Zhu LJ et al (2010) An association between immunosenescence and CD4(+)CD25(+) regulatory T cells: a systematic review. Biomed Environ Sci 23:327–332

    Article  CAS  PubMed  Google Scholar 

  22. Mayer E, Bannert C, Gruber S et al (2012) Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter. PLoS One 7:e29355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He Y, Na H, Li Y et al (2013) FoxP3 rs3761548 polymorphism predicts autoimmune disease susceptibility: a meta-analysis. Hum Immunol 74:1665–1671

    Article  CAS  PubMed  Google Scholar 

  24. Rodríguez-Perea A, Arcia ED, Rueda CM et al (2016) Phenotypical characterization of regulatory T cells in humans and rodents. Clin Exp Immunol 185:281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schneider A, Long SA, Cerosaletti K et al (2013) In active relapsing-remitting multiple sclerosis, effector T-cell resistance to adaptive Tregs involves Il-6-mediated signalling. Sci Transl Med 305:170ra15

    Google Scholar 

  26. Pesce B, Soto L, Sabugo F et al (2013) Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol 171:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmitt V, Rink L, Uciechowski P (2013) The Th17/Treg balance is disturbed during aging. Exp Gerontol 48:1379–1386

    Article  CAS  PubMed  Google Scholar 

  28. Duan MC, Han W, Jin PW et al (2015) Disturbed Th17/Treg balance in patients with non-small cell lung cancer. Inflammation 38:2156–2165

    Article  CAS  PubMed  Google Scholar 

  29. Chen ZW (2011) Immune biology of Ag-specific γδ T cells in infections. Cell Mol Life Sci 68:2409–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aggarwal R, Lu J, Kanji S et al (2013) Human Vγ2Vδ2 T cells limit breast cancer growth by modulating cell survival-, apoptosis-related molecules and microenvironment in tumors. Int J Cancer 133:2133–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oppeltz RF, Rani M, Zhang Q et al (2009) Gamma delta (γδ) T-cells are critical in the up-regulation of inducible nitric oxide synthase at the burn wound site. Immunology 128:580–588

    Article  CAS  Google Scholar 

  32. Argentati K, Re F, Donnini A et al (2002) Numerical and functional alterations of circulating T lymphocytes in aged people and centenarians. J Leukoc Biol 72:65–71

    CAS  PubMed  Google Scholar 

  33. Colonna-Romano G, Aquino A, Bulati M et al (2004) Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp Gerontol 39:1439–1446

    Article  CAS  PubMed  Google Scholar 

  34. Xiao X, Cai J (2017) Mucosal-associated invariant T cells: new insights into antigen recognition and activation. Front Immunol 8:1540 eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Novak J, Dobrovolny J, Novakova L et al (2014) The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol 80:271–275

    Article  CAS  PubMed  Google Scholar 

  36. Re F, Donnini A, Bartozzi B et al (2005) Circulating γδ T cells in young/adult and old patients with cutaneous primary melanoma. Immun Ageing 2:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Colonna-Romano G, Buffa S, Bulati M et al (2010) B cells compartment in centenarian offspring and old people. Curr Pharm Des 16:604–608

    Article  CAS  PubMed  Google Scholar 

  40. Buffa S, Pellicanò M, Bulati M et al (2013) A novel B cell population revealed by a CD38/CD24 gating strategy: CD38(−) CD24(−) B cells in centenarian offspring and elderly people. Age (Dordr) 35:2009–2024

    Article  CAS  Google Scholar 

  41. Martorana A, Balistreri CR, Bulati M et al (2014) Double negative (CD19+ IgG+ IgD−CD27−) B lymphocytes: a new insight from telomerase in healthy elderly, in centenarian offspring and in Alzheimer’s disease patients. Immunol Lett 162:303–309

    Article  CAS  PubMed  Google Scholar 

  42. Accardi G, Caruso C (2017) Updates in pathobiology: causality and chance in ageing, age-related diseases and longevity. In: Accardi G, Caruso C (eds) Updates in pathobiology: causality and chance in ageing, age-related diseases and longevity. University Press, Palermo, pp 13–24

    Google Scholar 

  43. Bulati M, Caruso C, Candore G et al (2017) The role of immune response in ageing and longevity. A focus on B cell compartment In: Accardi G, Caruso C (eds) Updates in pathobiology: causality and chance in ageing, age-related diseases and longevity. University Press, Palermo, pp 53–66

    Google Scholar 

  44. Rajpathak SN, Liu Y, Ben-David O et al (2011) Lifestyle factors of people with exceptional longevity. J Am Geriatr Soc 59:1509–1512

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kolovou G, Barzilai N, Caruso C et al (2014) The challenges in moving from ageing to successful longevity. Curr Vasc Pharmacol 12:662–673

    Article  CAS  PubMed  Google Scholar 

  46. Derhovanessian E, Maier AB, Beck R et al (2010) Hallmark features of immunosenescence are absent in familial longevity. J Immunol 185:4618–4624

    Article  CAS  PubMed  Google Scholar 

  47. Gueresi P, Miglio R, Monti D et al (2013) Does the longevity of one or both parents influence the health status of their offspring? Exp Gerontol 48:395–400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all participants (as well as their legal proxies) for their great contributions.

Funding

This work was supported by Grant of Ministry of University (PRIN: progetti di ricerca di rilevante interesse nazionale—Bando 2015 Prot 20157ATSLF) “Discovery of molecular and genetic/epigenetic signatures underlying resistance to age-related diseases and comorbidities” to CC and GC. MB, AA, and GA are fellows of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calogero Caruso.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest related.

Human and animal rights

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any study with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all the participants in this study or their legal proxies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubino, G., Bulati, M., Aiello, A. et al. Sicilian centenarian offspring are more resistant to immune ageing. Aging Clin Exp Res 31, 125–133 (2019). https://doi.org/10.1007/s40520-018-0936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-018-0936-7

Keywords

Navigation