Skip to main content

Advertisement

Log in

The body composition of patients with knee osteoarthritis: relationship with clinical parameters and radiographic severity

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims

We investigated body composition in knee osteoarthritis (OA) patients and evaluated its relationship with clinical parameters and radiographic severity.

Methods

Sixty-four patients with knee OA (52 females and 12 males with a mean age of 57.7 ± 8.6 years) and thirty healthy volunteers (20 females and 10 males with a mean age of 56.3 ± 9.5 years) were evaluated. Controls were selected among similar to demographic and hematologic characteristics of patients. Body compositions were assessed via bioelectrical impedance analysis (BIA). Each patient was clinically evaluated by the Western Ontario and McMaster University Osteoarthritis Index (WOMAC). In addition, radiographic severity was classified according to Kellgren–Lawrence’s criteria.

Results

Phase angle, body capacitance, resistance, reactance, lean body mass, and intracellular water values of the patients with knee OA were found to be significantly lower than those of the controls (p < 0.05). Furthermore, fat mass and extracellular water levels were significantly higher in the patients compared to the controls (p < 0.05). Lean body mass was inversely correlated with WOMAC score (r = −0.716, p < 0.001), whereas fat mass was moderately correlated with WOMAC score (r = 0.281, p < 0.05) in bivariate analysis. However, with respect to the body composition, there was no significant difference between early grades and late grades in the knee OA with patients (p > 0.05).

Conclusion

Body composition assessed using BIA might be associated with knee OA, and be a noninvasive tool for diagnosis of knee OA. However, body composition may not be predictive of the progression of knee OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Suri P, Morgenroth DC, Hunter DJ (2012) Epidemiology of osteoarthritis and associated comorbidities. PMR 4(5 Suppl):S10–S19. doi:10.1016/j.pmrj.2012.01.007

    Article  Google Scholar 

  2. Pottie P, Presle N, Terlain B, Netter P, Mainard D, Berenbaum F (2006) Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis 65:1403–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Masuko K, Murata M, Suematsu N, Okamoto K, Yudoh K, Nakamura H, Kato T (2009) A metabolic aspect of osteoarthritis: lipid as a possible contributor to the pathogenesis of cartilage degradation. Clin Exp Rheumatol 27:347–353

    CAS  PubMed  Google Scholar 

  4. Christensen R, Astrup A, Bliddal H (2005) Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthritis Cartilage 13:20–27

    Article  CAS  PubMed  Google Scholar 

  5. Holliday KL, McWilliams DF, Maciewicz RA, Muir KR, Zhang W, Doherty M (2011) Lifetime body mass index, other anthropometric measures of obesity and risk of knee or hip osteoarthritis in the GOAL case-control study. Osteoarthritis Cartilage 19:37–43

    Article  CAS  PubMed  Google Scholar 

  6. Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18:24–33

    Article  CAS  PubMed  Google Scholar 

  7. Sandmark H, Hogstedt C, Lewold S, Vingård E (1999) Osteoarthrosis of the knee in men and women in association with overweight, smoking, and hormone therapy. Ann Rheum Dis 58:151–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wang Y, Simpson JA, Wluka AE, Teichtahl AJ, English DR, Giles GG et al (2009) Relationship between body adiposity measures and risk of primary knee and hip replacement for osteoarthritis: a prospective cohort study. Arthritis Res Ther 11:R31. doi:10.1186/ar2636

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sowers MF, Yosef M, Jamadar D, Jacobson J, Karvonen-Gutierrez C, Jaffe M (2008) BMI vs. body composition and radiographically defined osteoarthritis of the knee in women: a 4-year follow-up study. Osteoarthritis Cartilage 16:367–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Jiang L, Tian W, Wang Y, Rong J, Bao C, Liu Y et al (2012) Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysis. Joint Bone Spine 79:291–297

    Article  PubMed  Google Scholar 

  11. Roubenoff R (1996) Applications of bioelectrical impedance analysis for body composition to epidemiologic studies. Am J Clin Nutr 64(3 Suppl):459S–462S

    CAS  PubMed  Google Scholar 

  12. Berry PA, Wluka AE, Davies-Tuck ML, Wang Y, Strauss BJ, Dixon JB et al (2010) The relationship between body composition and structural changes at the knee. Rheumatology (Oxford) 49:2362–2369

    Article  Google Scholar 

  13. Sowers MR, Karvonen-Gutierrez CA (2010) The evolving role of obesity in knee osteoarthritis. Curr Opin Rheumatol 22:533–537

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kyle UG, Schutz Y, Dupertuis YM, Pichard C (2003) Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 19:597–604

    Article  PubMed  Google Scholar 

  15. Guida B, Laccetti R, Gerardi C, Trio R, Perrino NR, Strazzullo P et al (2007) Bioelectrical impedance analysis and age-related differences of body composition in the elderly. Nutr Metab Cardiovasc Dis 17(3):175–180

    Article  PubMed  Google Scholar 

  16. Hemmingsson E, Uddén J, Neovius M (2009) No apparent progress in bioelectrical impedance accuracy: validation against metabolic risk and DXA. Obesity (Silver Spring) 17:183–187

    Article  Google Scholar 

  17. Sert C, Altindag O, Dasdag S, Akdag MZ (2008) Bioelectrical impedance analyses of patients with postmenopausal osteoporosis. J Back Musculoskelet Rehabil 21:29–33

    Google Scholar 

  18. Kahraman A, Hilsenbeck J, Nyga M, Ertle J, Wree A, Plauth M et al (2010) Bioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis C. Virol J 7:191. doi:10.1186/1743-422X-7-191

    Article  PubMed Central  PubMed  Google Scholar 

  19. Altay MA, Ertürk C, Sert C, Oncel F, Işikan UE (2012) Bioelectrical impedance analysis of basal metabolic rate and body composition of patients with femoral neck fractures versus controls. Eklem Hastalik Cerrahisi 23:77–81

    PubMed  Google Scholar 

  20. Cicuttini FM, Teichtahl AJ, Wluka AE, Davis S, Strauss BJ, Ebeling PR (2005) The relationship between body composition and knee cartilage volume in healthy, middle-aged subjects. Arthritis Rheum 52:461–467

    Article  PubMed  Google Scholar 

  21. Wang Y, Wluka AE, English DR, Teichtahl AJ, Giles GG, O’Sullivan R et al (2007) Body composition and knee cartilage properties in healthy, community-based adults. Ann Rheum Dis 66:1244–1248

    Article  PubMed Central  PubMed  Google Scholar 

  22. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29:1039–1049

    Article  CAS  PubMed  Google Scholar 

  23. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    CAS  PubMed  Google Scholar 

  24. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16:494–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sert C, Altindağ O, Sirmatel F (2009) Determination of basal metabolic rate and body composition with bioelectrical impedance method in children with cerebral palsy. J Child Neurol 24:237–240

    Article  PubMed  Google Scholar 

  26. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM et al (2004) Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr 23(5):1226–1243

    Article  PubMed  Google Scholar 

  27. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J et al (2004) Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 23:1430–1453

    Article  PubMed  Google Scholar 

  28. Ertürk C, Altay MA, Selek S, Koçyiğit A (2012) Paraoxonase-1 activity and oxidative status in patients with knee osteoarthritis and their relationship with radiological and clinical parameters. Scand J Clin Lab Invest 72:433–439

    Article  PubMed  Google Scholar 

  29. Hügle T, Geurts J, Nüesch C, Müller-Gerbl M, Valderrabano V (2012) Aging and osteoarthritis: an inevitable encounter? J Aging Res 2012:950192. doi:10.1155/2012/950192

    Article  PubMed Central  PubMed  Google Scholar 

  30. Segal NA, Glass NA (2011) Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis? Phys Sportsmed 39:44–50

    Article  PubMed  Google Scholar 

  31. Lewek MD, Rudolph KS, Snyder-Mackler L (2004) Quadriceps femoris muscle weakness and activation failure in patients with symptomatic knee osteoarthritis. J Orthop Res 22:110–115

    Article  PubMed Central  PubMed  Google Scholar 

  32. Baker KR, Xu L, Zhang Y, Nevitt M, Niu J, Aliabadi P et al (2004) Quadriceps weakness and its relationship to tibiofemoral and patellofemoral knee osteoarthritis in Chinese: the Beijing osteoarthritis study. Arthritis Rheum 50:1815–1821

    Article  PubMed  Google Scholar 

  33. Thorstensson CA, Petersson IF, Jacobsson LT, Boegård TL, Roos EM (2004) Reduced functional performance in the lower extremity predicted radiographic knee osteoarthritis five years later. Ann Rheum Dis 63:402–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bedson J, Croft PR (2008) The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 2(9):116. doi:10.1186/1471-2474-9-116

    Article  Google Scholar 

  35. Ertürk C, Altay MA, Işikan UE (2011) Patelloplasty with patellar decompression to relieve anterior knee pain in total knee arthroplasty. Acta Orthop Traumatol Turc. 45:425–430

    Article  PubMed  Google Scholar 

  36. Amin S, Baker K, Niu J, Clancy M, Goggins J, Guermazi A et al (2009) Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum 60:189–198

    Article  PubMed Central  PubMed  Google Scholar 

  37. Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C, Sowers MF (2010) Isometric quadriceps strength in women with mild, moderate, and severe knee osteoarthritis. Am J Phys Med Rehabil 89:541–548

    Article  PubMed Central  PubMed  Google Scholar 

  38. Henriksen M, Christensen R, Danneskiold-Samsøe B, Bliddal H (2012) Changes in lower extremity muscle mass and muscle strength after weight loss in obese patients with knee osteoarthritis: a prospective cohort study. Arthritis Rheum 64:438–442

    Article  PubMed  Google Scholar 

  39. Beckwée D, Vaes P, Cnudde M, Swinnen E, Bautmans I (2012) Osteoarthritis of the knee: why does exercise work? A qualitative study of the literature. Ageing Res Rev 28(12):226–236

    Google Scholar 

  40. Ishijima M, Watari T, Naito K, Kaneko H, Futami I, Yoshimura-Ishida K et al (2011) Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis. Arthritis Res Ther. doi:10.1186/ar3246

    PubMed Central  PubMed  Google Scholar 

  41. Ertürk C, Altay MA, Altay N, Kalender AM, Oztürk IA (2014) Will a single periarticular lidocaine-corticosteroid injection improve the clinical efficacy of intraarticular hyaluronic acid treatment of symptomatic knee osteoarthritis? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3398-2

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors did not receive any outside funding or grants in support of their research or in preparation of this work.

Conflict of interest

The authors reported no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemil Ertürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertürk, C., Altay, M.A., Sert, C. et al. The body composition of patients with knee osteoarthritis: relationship with clinical parameters and radiographic severity. Aging Clin Exp Res 27, 673–679 (2015). https://doi.org/10.1007/s40520-015-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0325-4

Keywords

Navigation