Skip to main content
Log in

The impact of COMT, BDNF and 5-HTT brain-genes on the development of anorexia nervosa: a systematic review

  • Review
  • Published:
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity Aims and scope Submit manuscript

Abstract

Purpose

The genetic aspect of anorexia nervosa (AN) involving specific genes of the central-nervous-system has not yet been clearly understood. The aim of this systematic review is to assess the impact of three candidate genes of the brain: catechol-O-methyltransferase, brain-derived neurotrophic factor (BDNF) and serotonin transporter protein, on the susceptibility to AN and identify whether a clear connection persists between each of the gene-polymorphisms and AN.

Methods

A total of 21 articles were selected for this review conforming to the PRISMA guidelines. Detailed keyword combinations were implemented within specific databases such as MEDLINE, SCIENCEDIRECT and PUBMED.

Results

The catechol-O-methyltransferase gene-polymorphism did not show any change in phenotypic variation between AN and control subjects; but the familial association was rather strong with an over-transmission of the H allele. The latter also correlated with several dimensions of the Temperament and Character Inventory (TCI) scale. A notable relation was indicated between BDNF gene-polymorphism and anorexia-restrictive in terms of phenotypic distribution; the Met66-allele also depicted high association with anorexic behavioral traits. The 5-HTTLPR gene-polymorphism was found to be significantly associated with AN susceptibility with an over-transmission of the S-allele from parents to offspring.

Conclusion

The systematic review distinctively emphasized the genetic contribution of the brain-genes on the development of AN. Despite significant study findings, no clear and standardized genetic route was determined to be the cause of AN development. Future research is needed on these specific genes to closely monitor the genetic polymorphisms and their mechanism on AN susceptibility.

Level of evidence:

I, systematic review

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rask-Andersen M, Olszewski P, Levine A, Schiöth H (2010) Molecular mechanisms underlying anorexia nervosa: focus on human gene association studies and systems controlling food intake. Brain Res Rev 62(2):147–164. https://doi.org/10.1016/j.brainresrev.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  2. Bulik CM, Landt M, Slof-Op CT, Van Furth EF, Sullivan PF (2007) The genetics of anorexia nervosa. Annu Rev Nutr 27(1):263–275. https://doi.org/10.1146/annurev.nutr.27.061406.093713

    Article  CAS  Google Scholar 

  3. Striegel-Moore RH, Cachelin FM (2001) Etiology of eating disorders in women. Counsel Psychol 29(5):635–661. https://doi.org/10.1177/0011000001295002

    Article  Google Scholar 

  4. Devlin B (2002) Linkage analysis of anorexia nervosa incorporating behavioral covariates. Hum Mol Genet 11(6):689–696. https://doi.org/10.1093/hmg/11.6.689

    Article  CAS  PubMed  Google Scholar 

  5. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 11(6):689–696. https://doi.org/10.1093/hmg/11.6.689

    Article  Google Scholar 

  6. Mayhew AJ, Pigeyre JM, Couturier JJ, Meyre DJ (2018) An evolutionary genetic perspective of eating disorders. Neuroendocrinology 106(3):292–306. https://doi.org/10.1159/000484525

    Article  CAS  PubMed  Google Scholar 

  7. Trace SE, Baker JH, Peñas-Lledó E, Bulik CM (2013) The genetics of eating disorders. Annu Rev Clin Psychol 9:589–620. https://doi.org/10.1146/annurev-clinpsy-050212-185546

    Article  PubMed  Google Scholar 

  8. Gorwood P, Bouvard M, Mouren-Simeoni MC, Kipman A, Ades J (1998) Genetics and anorexia nervosa. Psychiatr Genet 8(1):1–12. https://doi.org/10.1097/00041444-199800810-00001

    Article  CAS  PubMed  Google Scholar 

  9. McIntosh AM, Baig BJ, Hall J, Job D, Whalley HC, Lymer GKS, Moorhead TWJ, Owens DG, Miller P, Porteous D, Lawrie SM (2007) Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biol Psychiatry 61(10):1127–1134. https://doi.org/10.1016/j.biopsych.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  10. Bonifácio MJ, Palma PN, Almeida L, Soares-da-Silva P (2007) Catechol-O-methyltransferase and its inhibitors in Parkinson's disease. CNS Drug Rev 13(3):352–379. https://doi.org/10.1111/j.1527-3458.2007.00020.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hosák L (2007) Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry 22(5):276–281. https://doi.org/10.1016/j.eurpsy.2007.02.002

    Article  PubMed  Google Scholar 

  12. Ribases M, Gratacos M, Armengol L, De Cid R, Badia A, Jimenez L, Solano R, Vallejo J, Fernandez F, Estivill X (2003) Met66 in the brain-derived neurotrophic factor (BDNF) precursor is associated with anorexia nervosa restrictive type. Mol Psychiatry 8(8):745. https://doi.org/10.1038/sj.mp.4001281

    Article  CAS  PubMed  Google Scholar 

  13. Travaglia A, La Mendola D (2017) Zinc interactions with brain-derived neurotrophic factor and related peptide fragments. Vitam Hormones 104:29–56. https://doi.org/10.1016/bs.vh.2016.10.005

    Article  CAS  Google Scholar 

  14. Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11(6):1164–1178. https://doi.org/10.5114/aoms.2015.56342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brandys MK, Kas MJ, Van Elburg AA, Ophoff R, Slof-Op't Landt MC, Middeldorp CM, Boomsma DI, Van Furth EF, Slagboom PE, Adan RA (2013) The Val66Met polymorphism of the BDNF gene in anorexia nervosa: new data and a meta-analysis. World J Boil Psychiatry 14(6):441–451. https://doi.org/10.3109/15622975.2011.605470

    Article  Google Scholar 

  16. Hinney A, Barth N, Ziegler A, Von Prittwitz S, Hamann A, Hennighausen K, Pirke KM, Heils A, Rosenkranz K, Roth H, Coners H (1997) Serotonin transporter gene-linked polymorphic region: allele distributions in relationship to body weight and in anorexia nervosa. Life Sci 61(21):295–303. https://doi.org/10.1016/s0024-3205(97)00888-6

    Article  Google Scholar 

  17. Goldman N, Glei DA, Lin YH, Weinstein M (2010) The serotonin transporter polymorphism (5-HTTLPR): allelic variation and links with depressive symptoms. Depress Anxiety 27(3):260–269. https://doi.org/10.1002/da.20660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sundaramurthy D, Pieri LF, Gape H, Markham AF, Campbell DA (2000) Analysis of the serotonin transporter gene linked polymorphism (5‐HTTLPR) in anorexia nervosa. Am J Med Genet96(1):53–55. https://doi.org/10.1002/(sici)1096-8628(20000207)96:1<53::aid-ajmg11>3.0.co;2-x

  19. Ehrlich S, Franke L, Scherag S, Burghardt R, Schott R, Schneider N, Brockhaus S, Hein J, Uebelhack R, Lehmkuhl U (2010) The 5-HTTLPR polymorphism, platelet serotonin transporter activity and platelet serotonin content in underweight and weight-recovered females with anorexia nervosa. Eur Arch Psychiatry Clin Neuroscie 260(6):483–490. https://doi.org/10.1007/s00406-009-0092-3

    Article  Google Scholar 

  20. Steiger H (2004) Eating disorders and the serotonin connection: state, trait and developmental effects. J Psychiatry Neurosci 29(1):20

    PubMed  PubMed Central  Google Scholar 

  21. Kobiella A, Reimold M, Ulshöfer DE, Ikonomidou VN, Vollmert C, Vollstädt-Klein S, Rietschel M, Reischl G, Heinz A, Smolka MN (2011) How the serotonin transporter 5-HTTLPR polymorphism influences amygdala function: the roles of in vivo serotonin transporter expression and amygdala structure. Transl Psychiatry 1(8):37. https://doi.org/10.1038/tp.2011.29

    Article  CAS  Google Scholar 

  22. Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274(5292):1527–1531. https://doi.org/10.1126/science.274.5292.1527

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Kang Q, Jiang W, Fan J, Zhang M, Yu S, Zhang C (2015) The 5-HTTLPR confers susceptibility to anorexia nervosa in Han Chinese: evidence from a case-control and family-based study. PLoS ONE. https://doi.org/10.1371/journal.pone.0119378

    Article  PubMed  PubMed Central  Google Scholar 

  24. Collier DA, Arranz MJ, Li T, Mupita D, Brown N, Treasure J (1997) Association between 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet 350(9075):412. https://doi.org/10.1016/S0140-6736(05)64135-9

    Article  CAS  PubMed  Google Scholar 

  25. Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94(1):121–135. https://doi.org/10.1016/j.physbeh.2007.11.037

    Article  CAS  PubMed  Google Scholar 

  26. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  27. Frisch A, Laufer N, Danziger Y, Michaelovsky E, Leor S, Carel C, Stein D, Fenig S, Mimouni M, Apter A, Weizman A (2001) Association of anorexia nervosa with the high activity allele of the COMT gene: a family-based study in Israeli patients. Mol Psychiatry 6(2):243. https://doi.org/10.1038/sj.mp.4000830

    Article  CAS  PubMed  Google Scholar 

  28. Gabrovsek M, Brecelj-Anderluh M, Bellodi L, Cellini E, Di Bella D, Estivill X, Fernandez-Aranda F, Freeman B, Geller F, Gratacos M, Haigh R (2004) Combined family trio and case-control analysis of the COMT Val158Met polymorphism in European patients with anorexia nervosa. Am J Med Genet Part B Neuropsychiatr Genet 124(1):68–72. https://doi.org/10.1002/ajmg.b.20085

    Article  Google Scholar 

  29. Michaelovsky E, Frisch A, Leor S, Stein D, Danziger Y, Carel C, Fennig S, Mimouni M, Klauck SM, Benner A, Poustka A (2005) Haplotype analysis of the COMT-ARVCF gene region in Israeli anorexia nervosa family trios. Am J Med Genet Part B Neuropsychiatr Genet 139(1):45–50. https://doi.org/10.1002/ajmg.b.30230

    Article  CAS  Google Scholar 

  30. Mikołajczyk E, Śmiarowska M, Grzywacz A, Samochowiec J (2006) Association of eating disorders with catechol-O-methyltransferase gene functional polymorphism. Neuropsychobiology 54(1):82–86. https://doi.org/10.1159/000096043

    Article  CAS  PubMed  Google Scholar 

  31. Mikołajczyk E, Grzywacz A, Samochowiec J (2010) The association of catechol-O-methyltransferase genotype with the phenotype of women with eating disorders. Brain Res 1307:142–148. https://doi.org/10.1016/j.brainres.2009.10.035

    Article  CAS  PubMed  Google Scholar 

  32. Peng S, Yu S, Wang Q, Kang Q, Zhang Y, Zhang R, Jiang W, Qian Y, Zhang H, Zhang M, Xiao Z (2016) Dopamine receptor D2 and catechol-O-methyltransferase gene polymorphisms associated with anorexia nervosa in Chinese Han population: DRD2 and COMT gene polymorphisms were associated with AN. Neurosci Lett 616:147–151. https://doi.org/10.1016/j.neulet.2016.01.036

    Article  CAS  PubMed  Google Scholar 

  33. Ando T, Ishikawa T, Hotta M, Naruo T, Okabe K, Nakahara T, Takii M, Kawai K, Mera T, Nakamoto C, Takei M (2012) No association of brain-derived neurotrophic factor Val66Met polymorphism with anorexia nervosa in Japanese. Am J Med Genet Part B Neuropsychiatr Genet 159(1):48–52. https://doi.org/10.1002/ajmg.b.32000

    Article  CAS  Google Scholar 

  34. Gamero-Villarroel C, Gordillo I, Carrillo JA, García-Herráiz A, Flores I, Jiménez M, Monge M, Rodríguez-López R, Gervasini G (2014) BDNF genetic variability modulates psychopathological symptoms in patients with eating disorders. Eur Child Adolesc Psychiatry 23(8):669–679. https://doi.org/10.1007/s00787-013-0495-6

    Article  PubMed  Google Scholar 

  35. Dardennes RM, Zizzari P, Tolle V, Foulon C, Kipman A, Romo L, Iancu-Gontard D, Boni C, Sinet PM, Bluet MT, Estour B (2007) Family trios analysis of common polymorphisms in the obestatin/ghrelin, BDNF and AGRP genes in patients with Anorexia nervosa: association with subtype, body-mass index, severity and age of onset. Psychoneuroendocrinology 32(2):106–113. https://doi.org/10.1016/j.psyneuen.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  36. Koizumi H, Hashimoto K, Itoh K, Nakazato M, Shimizu E, Ohgake S, Koike K, Okamura N, Matsushita S, Suzuki K, Murayama M (2004) Association between the brain-derived neurotrophic factor 196G/A polymorphism and eating disorders. Am J Med Genet Part B Neuropsychiatr Genet 127(1):125–127. https://doi.org/10.1002/ajmg.b.20153

    Article  Google Scholar 

  37. Ribasés M, Gratacos M, Fernandez-Aranda F, Bellodi L, Boni C, Anderluh M, Cavallini MC, Cellini E, Di Bella D, Erzegovesi S, Foulon C (2004) Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum Mol Genet 13(12):1205–1212. https://doi.org/10.1093/hmg/ddh137

    Article  PubMed  Google Scholar 

  38. Ando T, Komaki G, Karibe M, Kawamura N, Hara S, Takii M, Naruo T, Kurokawa N, Takei M, Tatsuta N, Ohba M (2001) 5-HT2A promoter polymorphism is not associated with anorexia nervosa in Japanese patients. Psychiatr Genet 11(3):157–160. https://doi.org/10.1097/00041444-200109000-00008

    Article  CAS  PubMed  Google Scholar 

  39. Chen W, Qian J, Pu D, Ge H, Wu J (2015) The association of 5-HTTLPR gene polymorphisms and eating disorder: a meta-analysis. J Psychol Psychother 5(214):2161–2487. https://doi.org/10.4172/2161-0487.1000214

    Article  Google Scholar 

  40. Matsushita S, Suzuki K, Murayama M, Nishiguchi N, Hishimoto A, Takeda A, Shirakawa O, Higuchi S (2004) Serotonin transporter regulatory region polymorphism is associated with anorexia nervosa. Am J Med Genet Part B Neuropsychiatr Genet 128(1):114–117. https://doi.org/10.1002/ajmg.b.30022

    Article  Google Scholar 

  41. Nishiguchi N, Matsushita S, Suzuki K, Murayama M, Shirakawa O, Higuchi S (2001) Association between 5HT2A receptor gene promoter region polymorphism and eating disorders in Japanese patients. Biol Psychiatry 50(2):123–128. https://doi.org/10.1016/S0006-3223(00)01107-0

    Article  CAS  PubMed  Google Scholar 

  42. Rybakowski F, Slopien A, Dmitrzak-Weglarz M, Czerski P, Rajewski A, Hauser J (2006) The 5-HT2A–1438 A/G and 5-HTTLPR polymorphisms and personality dimensions in adolescent anorexia nervosa: association study. Neuropsychobiology 53(1):33–39. https://doi.org/10.1159/000090701

    Article  CAS  PubMed  Google Scholar 

  43. Ricca V, Nacmias B, Boldrini M, Cellini E, di Bernardo M, Ravaldi C, Tedde A, Bagnoli S, Placidi GF, Rotella CM, Sorbi S (2004) Psychopathological traits and 5-HT2A receptor promoter polymorphism (− 1438 G/A) in patients suffering from anorexia nervosa and bulimia nervosa. Neurosci Lett 365(2):92–96. https://doi.org/10.1016/j.neulet.2004.04.057

    Article  CAS  PubMed  Google Scholar 

  44. Camarena B, Hernandez S, Gonzalez L, Flores G, Luna D, Aguilar A, Caballero A (2018) Association study between the triallelic polymorphism of SLC6A4 gene and eating disorders. Am J Psychiatry Neurosci 6(4):104–107. https://doi.org/10.11648/j.ajpn.20180604.13

    Article  Google Scholar 

  45. Campos LKS, Sampaio ABRF, Garcia C Jr, Magdaleno R Jr, Battistoni MMDM, Turato ER (2012) Psychological characteristics of mothers of patients with anorexia nervosa: implications for treatment and prognosis. Trends Psychiatry Psychother 34(1):13–18. https://doi.org/10.1590/S2237-60892012000100004

    Article  PubMed  Google Scholar 

  46. Gervasini G, Gonzalez LM, Mota-Zamorano S, Gamero-Villarroel C, Carrillo JA, Flores I, Garcia-Herraiz A (2018) Association of COMT Val158Met polymorphism with psychopathological symptoms in patients with eating disorders. Curr Mol Med. https://doi.org/10.2174/1566524018666180608090512

    Article  PubMed  Google Scholar 

  47. Thaler L, Groleau P, Badawi G, Sycz L, Zeramdini N, Too A, Israel M, Joober R, Bruce KR, Steiger H (2012) Epistatic interactions implicating dopaminergic genes in bulimia nervosa (BN): relationships to eating-and personality-related psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 39(1):120–128. https://doi.org/10.1016/j.pnpbp.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  48. Xu B, Xie X (2016) Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci 17(5):282. https://doi.org/10.1038/nrn.2016.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, Hempstead BL, Bracken C (2013) Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun 4:2490. https://doi.org/10.1038/ncomms3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D 3 receptor expression and triggers behavioural sensitization. Nature 411(6833):86. https://doi.org/10.1038/35075076

    Article  CAS  PubMed  Google Scholar 

  51. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25. https://doi.org/10.1016/S0896-6273(02)00653-0

    Article  CAS  PubMed  Google Scholar 

  52. Fumeron F, Betoulle D, Aubert R, Herbeth B, Siest G, Rigaud D (2001) Association of a functional 5-HT transporter gene polymorphism with anorexia nervosa and food intake. Mol Psychiatry 6(1):9. https://doi.org/10.1038/sj.mp.4000824

    Article  CAS  PubMed  Google Scholar 

  53. Fairburn CG, Cooper Z, Doll HA, Welch SL (1999) Risk factors for anorexia nervosa: three integrated case-control comparisons. Arch Gen Psychiatry 56(5):468–476. https://doi.org/10.1001/archpsyc.56.5.468

    Article  CAS  PubMed  Google Scholar 

  54. Wankerl M, Miller R, Kirschbaum C, Hennig J, Stalder T, Alexander N (2014) Effects of genetic and early environmental risk factors for depression on serotonin transporter expression and methylation profiles. Transl Psychiatry 4(6):402. https://doi.org/10.1038/tp.2014.37

    Article  CAS  Google Scholar 

  55. Li Q (2006) Cellular and molecular alterations in mice with deficient and reduced serotonin transporters. Mol Neurobiol 34(1):51–65. https://doi.org/10.1385/MN:34:1:51

    Article  PubMed  Google Scholar 

  56. Favaro A, Manara R, Pievani M, Clementi M, Forzan M, Bruson A, Tenconi E, Degortes D, Pinato C, Giannunzio V, Frisoni GB (2014) Neural signatures of the interaction between the 5-HTTLPR genotype and stressful life events in healthy women. Psychiatry Res Neuroimaging 223(2):157–163. https://doi.org/10.1016/j.pscychresns.2014.05.006

    Article  Google Scholar 

  57. Fuglset TS, Endestad T, Landrø NI, Rø Ø (2015) Brain structure alterations associated with weight changes in young females with anorexia nervosa: a case series. Neurocase 21(2):169–177. https://doi.org/10.1080/13554794.2013.878728

    Article  PubMed  Google Scholar 

  58. Ozaki N, Rosenthal NE, Pesonen U, Lappalainen J, Feldman-Naim S, Schwartz PJ, Turner EH, Goldman D (1996) Two naturally occurring amino acid substitutions of the 5-HT2A receptor: similar prevalence in patients with seasonal affective disorder and controls. Biol Psychiatry 40(12):1267–1272. https://doi.org/10.1016/0006-3223(95)00649-4

    Article  CAS  PubMed  Google Scholar 

  59. Zorkoltseva IV, Axenovich TI (2003) Analysis of allelic association: estimation of the power of the TDT. Russ J Genet 39(8):948–954. https://doi.org/10.1023/A:1025343226007

    Article  CAS  Google Scholar 

  60. Horvath S, Laird NM, Knapp M (2000) The transmission/disequilibrium test and parental-genotype reconstruction for X-chromosomal markers. Am J Hum Genet 66(3):1161–1167. https://doi.org/10.1086/302823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li T, Ball D, Zhao J, Murray RM, Liu X, Sham PC, Collier DA (2000) Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol Psychiatry 5(1):77. https://doi.org/10.1038/sj.mp.4000638

    Article  CAS  PubMed  Google Scholar 

  62. Siegfried Z, Kanyas K, Latzer Y, Karni O, Bloch M, Lerer B, Berry EM (2004) Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and bingeing/purging subtypes. Am J Med Genet Part B Neuropsychiatr Genet 125(1):126–130. https://doi.org/10.1002/ajmg.b.20089

    Article  Google Scholar 

  63. Donofry SD, Roecklein KA, Wildes JE, Miller MA, Flory JD, Manuck SB (2014) COMT met allele differentially predicts risk versus severity of aberrant eating in a large community sample. Psychiatry Res 220(1):513–518. https://doi.org/10.1016/j.psychres.2014.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frieling H, Römer KD, Wilhelm J, Hillemacher T, Kornhuber J, de Zwaan M, Jacoby GE, Bleich S (2006) Association of catecholamine-O-methyltransferase and 5-HTTLPR genotype with eating disorder-related behavior and attitudes in females with eating disorders. Psychiatr Genet 16(5):205–208. https://doi.org/10.1097/01.ypg.0000218620.50386.f1

    Article  PubMed  Google Scholar 

  65. Frustaci A, Pozzi G, Gianfagna F, Manzoli L, Boccia S (2008) Meta-analysis of the brain-derived neurotrophic factor gene (BDNF) Val66Met polymorphism in anxiety disorders and anxiety-related personality traits. Neuropsychobiology 58(3–4):163–170. https://doi.org/10.1159/000182892

    Article  CAS  PubMed  Google Scholar 

  66. Rybakowski F, Dmitrzak-Weglarz M, Szczepankiewicz A, Skibinska M, Slopien A, Rajewski A, Hauser J (2007) Brain derived neurotrophic factor gene Val66Met and-270C/T polymorphisms and personality traits predisposing to anorexia nervosa. Neuroendocrinol Lett 28(2):153–158

    PubMed  Google Scholar 

  67. Arias B, Aguilera M, Moya J, Sáiz PA, Villa H, Ibáñez MI, García-Portillo MP, Bobes J, Ortet G, Fananas L (2012) The role of genetic variability in the SLC6A4, BDNF and GABRA6 genes in anxiety-related traits. Acta Psychiatr Scand 125(3):194–202. https://doi.org/10.1111/j.1600-0447.2011.01764.x

    Article  CAS  PubMed  Google Scholar 

  68. Klump KL, Bulik CM, Pollice C, Halmi KA, Fichter MM, Berrettini WH, Devlin B, Strober M, Kaplan A, Woodside DB, Treasure J (2000) Temperament and character in women with anorexia nervosa. J Nerv Ment Dis 188(9):559–567

    Article  CAS  Google Scholar 

  69. Enoch MA, Kaye WH, Rotondo A, Greenberg BD, Murphy DL, Goldman D (1438G) 5-HT2A promoter polymorphism − 1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet 351(9118):1785–1786. https://doi.org/10.1016/S0140-6736(05)78746-8

    Article  CAS  PubMed  Google Scholar 

  70. Cloninger CR, Przybeck TR, Svrakic DM, Wetzel RD (1994) The temperament and character inventory (TCI): a guide to its development and use

  71. Little S (1995) Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet 7(1):9–8

    Google Scholar 

  72. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342(6157):475–9. https://doi.org/10.1126/science.1241934

    Article  PubMed  PubMed Central  Google Scholar 

  73. Anderberg UM, Forsgren T, Ekselius L, Marteinsdottir I, Hallman J (1999) Personality traits on the basis of the Temperament and Character Inventory in female fibromyalgia syndrome patients. Nord J Psychiatry 53(5):353–359. https://doi.org/10.1080/080394899427827

    Article  Google Scholar 

  74. Genetics Home Reference (2018) What are whole exome sequencing and whole genome sequencing? https://ghr.nlm.nih.gov/primer/testing/sequencing. Accessed 3 Aug 2018

  75. Genetics Home Reference (2018) What is a gene? Genetics home reference. https://ghr.nlm.nih.gov/primer/basics/gene. Accessed 7 July 2018

  76. Goldman AD, Landweber LF (2016) What is a genome? PLoS Genet 12(7):e1006181. https://doi.org/10.1371/journal.pgen.1006181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich H, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. https://doi.org/10.1126/science.2999990

    Article  PubMed  Google Scholar 

  78. Cooper JA, Mintz BR, Palumbo SL, Li WJ (2013) Assays for determining cell differentiation in biomaterials. Charact Biomater. https://doi.org/10.1533/9780857093684.101

    Article  Google Scholar 

  79. Jones J, Barry MM (2011) Exploring the relationship between synergy and partnership functioning factors in health promotion partnerships. Health Promot Int 26(4):408–420. https://doi.org/10.1093/heapro/dar002

    Article  PubMed  Google Scholar 

  80. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52(3):506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rogers AJ, Weiss ST (2017) Epidemiologic and population genetic studies. In: Clinical and translational science, 2nd ed, pp 313–326. https://doi.org/10.1016/B978-0-12-802101-9.00017-X

  82. Lauretto MS, Nakano F, Faria SR Jr, Pereira CA, Stern JM (2009) A straightforward multiallelic significance test for the Hardy–Weinberg equilibrium law. Genet Mol Biol 32(3):619–625. https://doi.org/10.1590/S1415-47572009000300028

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tacik P, Guthrie KJ, Strongosky AJ, Broderick DF, Riegert-Johnson DL, Tang S, El-Khechen D, Parker AS, Ross OA, Wszolek ZK (2015) Whole-exome sequencing as a diagnostic tool in a family with episodic ataxia type 1. In: Mayo Clinic Proceedings, vol 90, no 3. Elsevier, pp 366–371

  84. Thiel A, Züger M, Jacoby GE, Schüáler G (1998) Thirty-month outcome in patients with anorexia or bulimia nervosa and concomitant obsessive-compulsive disorder. Am J Psychiatry 155(2):244–249. https://doi.org/10.1176/ajp.155.2.244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude and appreciation to University College London Libraries for supporting this review project.

Funding

There was no funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lama Mattar.

Ethics declarations

Conflict of interest

None of the author has declared a conflict of interest.

Ethical approval

The following systematic review did not require Institutional Review Board approval.

Informed consent

Formal consent was not required for this systematic review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Definitions

Appendix: Definitions

ARMS assay Amplification refractory manipulation system-technique used for the detection of single base mutations or deletions [71].

Codon a sequence of 3 nucleotides from DNA or RNA that encodes for a specific amino acid during protein synthesis [72].

Cooperativeness Character dimension of the TCI scale. The extent to which an individual is empathetic, helpful and thoughtful of others [73].

Exome sequencing Method through which genetic variations are detected and identified within the protein-coding region [74].

Exome the part of the human genome that is made up of exons. Exons form 1% of the total genome and constitute the DNA sequences that encode for the specific proteins. Hence their function of protein-coding genes [74].

Genome sequencing Genetic method for the identification of genetic variations and mutation within the whole set of DNA in the human body [76].

Genome the whole genetic material of an individual that contains the complete set of genetic instructions needed for adequate growth and development. It is the full set of DNA including the genes (coding sequences) and the non-coding regions [76].

Haplotype the combination of alleles aligned within one single chromosome and inherited as unit from one of the parents. Haplotypes enable the detection of major informational change within the DNA sequences during cell division, which consequently enhances the identification of disease-causing mutations.

Harm avoidance Temperament dimension of the TCI scale. The degree to which an individual is pessimistic, constantly doubtful, worrying and fearful [73].

Heritability the proportion of variation in a specific phenotypic trait that accounts from genetic variations between individuals within the population [5].

PCR–RFLP Polymerase Chain Reaction-Restriction Fragment Length Polymorphism- Method by which a homologous DNA sample is broken down by restrictive enzymes, thus forming DNA restriction fragments. The latter are then separated using a specific gel to be analyzed for identification of the genome mapping, disease risk and genetic mutations [77].

Reward dependence Temperament dimension of the TCI scale. The extent to which one is socially attached and dependent on being approved and accepted by others [73].

Salting out procedure DNA purification method whereby a high concentration of salt is used in a sample. The water molecules would attract water molecules due to the salt ions, which become unavailable for interaction with other charged proteins. Consequently, the protein and other contaminants precipitate, which facilitates their removal from the sample for purification [78].

Self-directedness Character dimension of the TCI scale. The degree to which an individual is self-confident, self-accepting and able to control and regulate his/her behavior [73].

Synergy The idea that the interaction between combined parts would yield greater results and outcomes than if introduced separately [79].

Transmission disequilibrium test (TDT) It evaluates parents who are heterozygous for a particular allele linked to a specific disease and assesses the frequency of transmission of the allele or its polymorphism to their affected offspring [80]. Normally, a random transmission of alleles is expected with 50% transmission from each parent. However, in disease states, such as AN, a specific allele locus is associated with the particular disease condition (AN); it is therefore projected to have an over-transmission of a specific risk-allele in the AN patient population [81].

Hardy Weinberg equilibrium (HWE) A gold-standard principle stating that the genetic variation within a population, specifically the genotypic and allelic frequencies, will remain constant from one generation to the other assuming that no evolutionary factors will disrupt the equilibrium [82]. The reliance on the HWE and statistical tests for associations within studies accentuates the relevance of genetic findings and induces more credibility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Al Hassan, S., Cutinha, D. & Mattar, L. The impact of COMT, BDNF and 5-HTT brain-genes on the development of anorexia nervosa: a systematic review. Eat Weight Disord 26, 1323–1344 (2021). https://doi.org/10.1007/s40519-020-00978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40519-020-00978-5

Keywords

Navigation