Skip to main content

Advertisement

Log in

Surface Modification of Nobel Metals and Stainless Steel by Pulsed Nd: YAG Laser

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Surface modification by laser is shown to be a powerful tool for restructuring metals surfaces for the desired application keeping the bulk material intact. Pulsed Nd: YAG laser, having maximum energy of 10 Joule and variable pulse duration from micro to millisecond and intensity of 102 to 108 W/cm2 were utilized to modify the surfaces of Nobel metals (silver and gold) and stainless steel. Results show that surface hardness of silver and stainless steel increased with decreasing laser intensity and vice versa. Our findings show that the surface hardness of stainless steel is about 3 times higher than that of silver when similar laser parameters are used such as pulse duration and intensity. AFM images show the formation of the martensite phase which is found to improve the surface hardness. Thermal analysis of the laser-irradiated zones shows a variation in the thermal distribution for silver and stainless steel when both irradiated at 6 ms pulse duration time. Silver shows a lower surface temperature of about 600 oC with a heat penetration depth of about 0.85 mm, while stainless steel shows a higher surface temperature of about 1520 oC with 0.4 mm depth. COMSOL analysis is used to study the plasmonic effect of gold and silver nanostructures after irradiation with the laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jemat, A., Ghazali, M.J., Razali, M., Otsuka, Y.: Surface modifications and their effects on titanium dental implants. Biomed Res. Int2015 (2015). https://doi.org/10.1155/2015/791725

  2. Brady, M.P., Unocic, K.A., Lance, M.J., Santella, M.L., Yamamoto, Y., Walker, L.R.: Increasing the upper temperature oxidation limit of alumina forming austenitic stainless steels in air with water vapor. Oxid. Met. 75(5–6), 337–357 (2011). https://doi.org/10.1007/s11085-011-9237-7

    Article  Google Scholar 

  3. Babu, P.D., Buvanashekaran, G., Balasubramanian, K.R.: Experimental studies on the microstructure and hardness of laser transformation hardening of low alloy steel. Trans. Can. Soc. Mech. Eng 36(3), 241–258 (2012). https://doi.org/10.1139/tcsme-2012-0018

    Article  Google Scholar 

  4. Li, S., Sun, B., Imai, H., Kondoh, K.: Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti-VGCFs system. Carbon N. Y. 61, 216–228 (2013). https://doi.org/10.1016/j.carbon.2013.04.088

    Article  Google Scholar 

  5. Dai, J., Wang, T., Chai, L., Hu, X., Zhang, L., Guo, N.: Characterization and correlation of microstructure and hardness of Ti–6Al–4V sheet surface-treated by pulsed laser. J. Alloys Compd. 826, 154243 (2020). https://doi.org/10.1016/j.jallcom.2020.154243

    Article  Google Scholar 

  6. Lee, S., Kang, J., Kim, D.A., Mini Review: Recent advances in surface modification of porous silicon. Materials (Basel) 11(12), 2557 (2018). https://doi.org/10.3390/ma11122557

    Article  Google Scholar 

  7. Khaleeq-ur-Rahman, M., Butt, M.Z., Samuel, A., Siraj, K.: Investigation of laser irradiation effects on the hardness of Al 5086 alloy under different conditions. Vacuum. 85(3), 474–479 (2010). https://doi.org/10.1016/j.vacuum.2010.08.025

    Article  Google Scholar 

  8. Mozetiˇ, M.: Surface modification to improve properties of materials (2019). https://doi.org/10.3390/ma12030441

  9. Rasheed, B.G., Ibrahem, M.A.: Laser micro/nano machining of silicon. Micron 2021, 140. https://doi.org/10.1016/j.micron.2020.102958

  10. Almansoori, A., Masters, R., Abrams, K., Schäfer, J., Gerling, T., Majewski, C., Rodenburg, C.: Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments. Plasma Process. Polym. 15(7), 1800032 (2018). https://doi.org/10.1002/ppap.201800032

    Article  Google Scholar 

  11. Aborkin, A.V., Vaganov, V.E., Shlegel’, A.N., Bukarev, I.M. Effect of Laser Hardening on Die Steel Microhardness and Surface Quality. Metallurgist. 59(7–8), 619–625 (2015). https://doi.org/10.1007/s11015-015-0148-8

  12. Montealegre, A., Castro, M., Rey, G., Arias, P., Vázquez, J.L., González, P.: Surface treatments by laser technology. Contemp. Mater 1(1), 19–30 (2010). https://doi.org/10.5767/anurs.cmat.100101.en.019M

    Article  Google Scholar 

  13. Al-Kliazraji, K.K., Rasheeda, B.G., Ibrahem, M.A., Mohammed, A.F.: Effect of laser-induced etching process on porous structures. In Procedia Eng. 38 (2012). https://doi.org/10.1016/j.proeng.2012.06.172

  14. Naeem, S., Mehmood, T., Wu, K.M., Khan, B.S., Majid, A., Siraj, K., Mukhtar, A., Saeed, A., Riaz, S.: Laser surface hardening of gun metal alloys. Materials (Basel) 12(16), 1–11 (2019). https://doi.org/10.3390/ma12162632

    Article  Google Scholar 

  15. Borisov, V.M., Trofimov, V.N., Sapozhkov, A.Y., Kuzmenko, V.A., Mikhaylov, V.B., Cherkovets, V.Y., Yakushkin, A.A., Yakushin, V.L., Dzhumayev, P.S.: Capabilities to improve corrosion resistance of fuel claddings by using powerful laser and plasma sources. Phys. At. Nucl. 79(14), 1656–1662 (2016). https://doi.org/10.1134/S1063778816140039

    Article  Google Scholar 

  16. Mirkoohi, E., Ning, J., Bocchini, P., Fergani, O., Chiang, K.-N., Liang, S.: Thermal modeling of temperature distribution in metal additive manufacturing considering effects of build layers, latent heat, and temperature-sensitivity of material properties. J. Manuf. Mater. Process 2(3), 63 (2018). https://doi.org/10.3390/jmmp2030063

    Article  Google Scholar 

  17. Shen, M., Zhu, S.: A general strategy for the ultrafast surface modification of metals. Nat. Commun. 7, 1–6 (2016). https://doi.org/10.1038/ncomms13797

    Article  Google Scholar 

  18. Moradi, M., Ghorbani, D., Moghadam, M.K., Kazazi, M., Rouzbahani, F., Karazi, S.: Nd:YAG laser hardening of AISI 410 stainless steel: microstructural evaluation, mechanical properties, and corrosion behavior. J. Alloys Compd. 795, 213–222 (2019). https://doi.org/10.1016/j.jallcom.2019.05.016

    Article  Google Scholar 

  19. Moradi, M., Arabi, H., Jamshidi Nasab, S., Benyounis, K.Y.: A Comparative Study of Laser Surface Hardening of AISI 410 and 420 Martensitic Stainless Steels by Using Diode Laser. Opt. Laser Technol. 111, 347–357 (2019). https://doi.org/10.1016/j.optlastec.2018.10.013

    Article  Google Scholar 

  20. Fraggelakis, F., Giannuzzi, G., Gaudiuso, C., Manek-Hönninger, I., Mincuzzi, G., Ancona, A., Kling, R.: Double- and multi-femtosecond pulses produced by birefringent crystals for the generation of 2D laser-induced structures on a stainless steel surface. Materials (Basel) 12(8), 1257 (2019). https://doi.org/10.3390/ma12081257

    Article  Google Scholar 

  21. Balasubramanian, K.R., Babu, P.D., Buvanashekaran, G.: Laser transformation hardening of steel, 2nd edn, Elsevier Ltd., Amsterdam (2015). https://doi.org/10.1016/b978-0-08-101252-9.00011-x

  22. Zhang, P.L., Yan, H., Xu, P.Q., Yu, Z.S., Li, C.G., Lu, Q.H.: Effect of laser surface hardening on the microstructure, hardness, wear resistance and softening of a low carbon steel. Lasers Eng 28(3–4), 135–149 (2014)

    Google Scholar 

  23. Li, W., Valentine, J.G.: Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6(1), 177–191 (2017). https://doi.org/10.1515/nanoph-2015-0154

    Article  Google Scholar 

  24. Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chemie Int. Ed 48(1), 60–103 (2009). https://doi.org/10.1002/anie.200802248

    Article  Google Scholar 

  25. Moradi, M., Karami Moghadam, M., Kazazi, M.: Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating. Optik (Stuttg) 178, 614–622 (2019). https://doi.org/10.1016/j.ijleo.2018.10.036

    Article  Google Scholar 

  26. Wolfe, R.: The theory of the reflectivity of metals. Proc. Phys. Soc. Sect. A1955, 68(2), 121–127. https://doi.org/10.1088/0370-1298/68/2/309

  27. Moradi, M., KaramiMoghadam, M.: High power diode laser surface hardening of AISI 4130; Statistical modelling and optimization. Opt. Laser Technol 111, 554–570 (2019). https://doi.org/10.1016/j.optlastec.2018.10.043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Ibrahem.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, B.G., Ibrahem, M.A. & Ibrahim, M.H. Surface Modification of Nobel Metals and Stainless Steel by Pulsed Nd: YAG Laser. Lasers Manuf. Mater. Process. 8, 45–59 (2021). https://doi.org/10.1007/s40516-020-00135-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-020-00135-x

Keywords

Navigation