Skip to main content
Log in

Analytical and Numerical Analyses of the Support System for a Large-span Tunnel in Challenging and Seismically Active Ground Conditions

  • Technical Paper
  • Published:
Transportation Infrastructure Geotechnology Aims and scope Submit manuscript

Abstract

The Dogancay T1 tunnel, projected within the scope of the Ankara-Istanbul high-speed train project, is being excavated entirely through clay and cohesionless units and is located in the North Anatolian Fault Zone (NAFZ). To determine the support system in the tunnel, innovative approaches require investigation through analytical and numerical methods to evaluate their suitability. The present study investigates rigid support systems, including the intermediate lining and pre-support excavation techniques in the new Austrian tunneling method (NATM), with 3D numerical analyses. The tunnel is in a seismically active zone, and the study also addresses the seismic sustainability of the proposed support system. The results of analyses showed that the proposed excavation and support system can be successfully implemented in the Dogancay T1 tunnel. The case study provides guidelines for investigating tunnel excavation and support systems in poor ground conditions in tectonically active zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Data Availability

Whole data used in the study is presented in the text.

References

  • Adoko, A.C., Gokceoglu, C., Yagiz, S.: Bayesian prediction of TBM penetration rate in rock mass. Eng. Geol. 226, 245–256 (2017). https://doi.org/10.1016/j.enggeo.2017.06.014

    Article  Google Scholar 

  • Agbay, E., Topal, T.: Evaluation of twin tunnel-induced surface ground deformation by empirical and numerical analyses (NATM part of Eurasia tunnel, Türkiye). Comput Geotech 119, 103367 (2020). https://doi.org/10.1016/j.compgeo.2019.103367

    Article  Google Scholar 

  • Akgün, H., Muratlı, S.W., Koçkar, M.K.: Geotechnical investigations and preliminary support design for the Geçilmez tunnel: a case study along the Black Sea coastal highway, Giresun, northern Turkey. Tunn. Undergr. Space Technol. 40, 277–299 (2014)

    Article  Google Scholar 

  • Aksoy, C.O., Kantarci, O., Ozacar, V.: An example of estimating rock mass deformation around an underground opening using numerical modelling. Int. J. Rock Mech. Min. Sci. 47, 272–278 (2010)

    Article  Google Scholar 

  • Aksoy, C.O., Onargan, T.: The role of umbrella arch and face bolt as deformation preventing support system in preventing building damages. Tunneling and Underground Space Technology 25, 553–559 (2010)

    Article  Google Scholar 

  • Aksoy, C.O., Ogul, K., Topal, I., Ozer, S.C., Özacar, V., Posluk, E.: Numerical modeling of non-deformable support in swelling and squeezing rock. International Journal of Rock Mechanics and Mining Science 52, 61–70 (2012)

    Article  Google Scholar 

  • Aksoy, C.O., Ogul, K., Topal, I., Posluk, E., Gicir, A., Kucuk, K., Uyar Aldas, G.: Reducing deformation effect of tunnel with non-deformable support system by jointed rock mass model. Tunn Underground Space Technol 40, 218–227 (2014)

    Article  Google Scholar 

  • Aksoy, C.O., Uyar, G.G., Posluk, E., Ogul, K., Topal, I., Kucuk, K.: Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway project. Structureal Eng Mechanics 58(5), 869–886 (2016). https://doi.org/10.12989/sem.2016.58.5.869

    Article  Google Scholar 

  • Alp, M., Apaydin, A.: Assessment of the factors affecting the advance rate of the Tunnel Gerede, the longest and one of the most problematic water transmission tunnels of Turkey. Tunn. Undergr. Space Technol 89, 157–169 (2019). https://doi.org/10.1016/j.tust.2019.04.001

    Article  Google Scholar 

  • Apaydin, A.: Comparison of predicted and actual states in tunnels lessons to be learned from the Gerede Water Transmission Tunnel, Türkiye. Quart J Eng Geol Hydrogeol 54(1), (2021). https://doi.org/10.1144/qjegh2020-060

    Article  Google Scholar 

  • Armaghani, D.J., Mohamad, E.T., Hajihassani, M., Yagiz, S., Motaghedi, H.: Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Eng Computers 32(2), 189–206 (2016). https://doi.org/10.1007/s00366-015-0410-5

    Article  Google Scholar 

  • Aydin, A., Ozbek, A., Cobanoglu, I.: Tunnelling in difficult ground: a case study from Dranaz tunnel, Sinop. Türkiye. Eng Geol 74(3–4), 293–301 (2004). https://doi.org/10.1016/j.enggeo.2004.04.003

    Article  Google Scholar 

  • Aygar, E.: Evaluation of new Austrian tunnelling method applied to Bolu tunnel’s weak rocks. J Rock Mechanics Geotech Eng 12, 541–556 (2020). https://doi.org/10.1016/j.jrmge.2019.12.011

    Article  Google Scholar 

  • Aygar, E.B., Gokceoglu, C.: Problems encountered during a railway tunnel excavation in squeezing and swelling materials and possible engineering measures: a case study from Türkiye. Sustainability 12(3), 1166 (2020). https://doi.org/10.3390/su12031166

    Article  Google Scholar 

  • Aygar, E.B., Gokceoglu, C.: Analytical solutions and 3D numerical analyses of a shallow tunnel excavated in weak ground: a case from Turkey. Geo-Engineering 12, 9 (2021). https://doi.org/10.1186/s40703-021-00142-7

    Article  Google Scholar 

  • Aygar, E.B., Gokceoglu, C.: A special support design for a large-span tunnel crossing an active fault (T9 Tunnel, Ankara-Sivas High-Speed Railway Project, Turkey). Environ Earth Sci 80(1), 37 (2021). https://doi.org/10.1007/s12665-020-09328-1

    Article  Google Scholar 

  • Aygar, E.B., Gokceoglu, C.: An assessment on the inner lining need for a large-span tunnel (a case from Turkey, Akyazi Tunnel, Trabzon). SN Appl Sci 3(4), 457 (2021). https://doi.org/10.1007/s42452-021-04366-1

    Article  Google Scholar 

  • Barton, N.: Minimizing the use of concrete in tunnels and caverns: comparing NATM and NMT. Innovative Infrastructure Solutions 2(1), 52 (2017). https://doi.org/10.1007/s41062-017-0071-x

    Article  Google Scholar 

  • Barton, N.R., Lien, R., Lunde, J.: Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189–239 (1974)

    Article  Google Scholar 

  • Bieniawski, Z.T.: Engineering classification of jointed rock masses. Trans s. Afr. Inst. Civ. Engrs 15, 335–344 (1973)

    Google Scholar 

  • Bieniawski, Z.T.: Engineering rock mass classifications. Wiley, New York (1989)

    Google Scholar 

  • Bilgin, N.: An appraisal of TBM performances in Turkey in difficult ground conditions and some recommendations. Tunnelling and Underground Space Technology 57, 265–276 (2016). https://doi.org/10.1016/j.tust.2016.01.038

    Article  Google Scholar 

  • Bilgin, N., Algan, M.: The performance of a TBM in a squeezing ground at Uluabat, Türkiye. Tunn. Undergr. Space Technol. 32, 58–65 (2012). https://doi.org/10.1016/j.tust.2012.05.004

    Article  Google Scholar 

  • Bilgin, N., Ates, U.: Probe drilling ahead of two tbms in difficult ground conditions in Türkiye. Rock Mech. Rock Eng. 49(7), 2763–2772 (2016). https://doi.org/10.1007/s00603-016-0937-9

    Article  Google Scholar 

  • Bilgin, N., Acun, S.: The effect of rock weathering and transition zones on the performance of an EPB-TBM in complex geology near Istanbul, Türkiye. Bull. Eng. Geol. Env. 80(4), 3041–3052 (2021). https://doi.org/10.1007/s10064-021-02142-4

    Article  Google Scholar 

  • Cao, C., Shi, C., Lei, M., Yang, W., Liu, J.: Squeezing failure of tunnels: a case study. Tunn. Undergr. Space Technol. 77, 188–203 (2018). https://doi.org/10.1016/j.tust.2018.04.007

    Article  Google Scholar 

  • Cao, H., Peng, L., Lei, M., Tang, Q., Peng, L., Chen, F.: Calculation model of supporting system for tunnel under shallow and weak surrounding rock considering the synergistic effects. Geotech Geol Eng 38, 1379–1388 (2020). https://doi.org/10.1007/s10706-019-01097-4

    Article  Google Scholar 

  • Das, R., Singh, P.K., Kainthola, A., Panthee, S.: Numerical analysis of surface subsidence in asymmetric parallel highway tunnels. J Rock Mech Geotech Eng 9(2017), 170–179 (2017)

    Article  Google Scholar 

  • Dalgic, S.: Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Türkiye. Eng. Geol. 67, 73–96 (2002)

    Article  Google Scholar 

  • Dalgic, S.: Tunneling in fault zones, Tuzla tunnel, Türkiye. Tunn. Undergr. Space Technol. 18(5), 453–465 (2003). https://doi.org/10.1016/S0886-7798(03)00045-2

    Article  Google Scholar 

  • Eftekhari, A., Aalianvari, A.: An overview of several techniques employed to overcome squeezing in mechanized tunnels a case study. Geomech Eng 18(2), 215–224 (2019). https://doi.org/10.12989/gae.2019.18.2.215

    Article  Google Scholar 

  • Emre, Ö., Erkal, T., Tchepalyga, A., Kazancı, N., Keçer, M., ve Ünay, E.: Neogene-Quaternary evolution of the eastern Marmara region. Northwest Türkiye: Mineral Res Ve Exploration Bull 120, 119–145 (1998)

    Google Scholar 

  • Farrokh, E., Rostami, J.: Effect of adverse geological condition on TBM operation in Ghomroud tunnel conveyance project. Tunn. Undergr. Space Technol. 24(4), 436–446 (2009). https://doi.org/10.1016/j.tust.2008.12.006

    Article  Google Scholar 

  • Hasanpour, R., Rostami, J., Thewes, M., Schmitt, J.: Parametric study of the impacts of various geological and machine parameters on thrust force requirements for operating a single shield TBM in squeezing ground. Tunn. Undergr. Space Technol. 73, 252–260 (2018). https://doi.org/10.1016/j.tust.2017.12.027

    Article  Google Scholar 

  • Hashash, Y.M.A., Hook, J.J., Schmidt, B., Yao, J.I.: Seismic design and analysis of underground structures. Tunneling and Underground Space Technology 16, 247–293 (2001)

    Article  Google Scholar 

  • Hoek, E., Brown, E.T.: Underground excavations in rock. Instn Min. Metall, London (1980)

    Google Scholar 

  • Kargar, A.R., Rahmannejad, R., Hajabasi, M.A.: A semi-analytical elastic solution for stress field of lined non-circular tunnels at great depth using complex variable method. Int. J. Solids Struct. 51(6), 1475–1482 (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.038

    Article  Google Scholar 

  • Kaya, A., Bulut, F.: Geotechnical studies and primary support design for a highway tunnel: a case study in Türkiye. Bull Eng Geol Envron 78(8), 6311–6334 (2019). https://doi.org/10.1007/s10064-019-01529-8

    Article  Google Scholar 

  • Khanbabazadeh, H., Iyisan, R.: A numerical study on the 2D behavior of the single and layered clayey basins. Bulletin of Earthquake Eng 12, 1515–1536 (2014)

    Article  Google Scholar 

  • Kirsch, E.G.: The theory if elasticity and the need of the strength of materials (trans.). J Assoc German Eng. 42, 797–807 (1898)

    Google Scholar 

  • Koçkar, M.K., Akgün, H.: Methodology for tunnel and portal support design in mixed limestone, schist and phyllite conditions: a case study in Türkiye. Int. J. Rock Mech. Min. Sci. 40, 173–196 (2003)

    Article  Google Scholar 

  • Komu, M.P., Guney, U., Kilickaya, T.E., Gokceoglu, C.: Using 3D numerical analysis for the assessment of tunnel-landslide relationship: Bahce-Nurdag Tunnel (South of Türkiye). Geotech. Geol. Eng. 38(2), 1237–1254 (2020). https://doi.org/10.1007/s10706-019-01084-9

    Article  Google Scholar 

  • Kong, S.M., Choi, S.I., Shim, S.B., Lee, H., Oh, D.W., Lee, S.W.: Stability evaluation of TBM pilot tunnels to rear blasting using the protection shield. Appl. Sci. 11(4), 1759 (2021). https://doi.org/10.3390/app11041759

    Article  Google Scholar 

  • Lee, Y.-Z., Schubert, W.: Determination of the round length for tunnel excavation in weak rock. Tunn Underground Space Technol 23, 221–231 (2008). https://doi.org/10.1016/j.tust.2007.04.001

    Article  Google Scholar 

  • Li, W., Zhang, C.P., Zhu, W.J., Zhang, D.L.: Upper-bound solutions for the face stability of a non-circular NATM tunnel in clays with a linearly increasing undrained shear strength with depth. Comput. Geotech. 114, 103136 (2019). https://doi.org/10.1016/j.compgeo.2019.103136

    Article  Google Scholar 

  • Luo, Y., Chen, J., Chen, Y., Diao, P., Qiao, X.: Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method. Tunnelling and Underground Space Technology 71, 478–493 (2018). https://doi.org/10.1016/j.tust.2017.10.003

    Article  Google Scholar 

  • Lysmer, J., Kuhlemeyer, R.L.: Finite dynamic model for infinite media. J Eng Mech 95(EM4), 859–877 (1969)

    Google Scholar 

  • Maleki, M.R., Dehnavi, R.N.: Influence of discontinuities on the squeezing intensity in high in-situ stresses (a tunnelling case study; actual evidences and TBM release techniques). Rock Mech. Rock Eng. 51(9), 2911–2933 (2018). https://doi.org/10.1007/s00603-018-1476-3

    Article  Google Scholar 

  • Moussaei, N., Sharifzadeh, M., Sahriar, K., Khosravi, M.H.: A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modelling. Tunn. Undergr. Space Technol 91, 103017 (2019)

    Article  Google Scholar 

  • Niedbalski, Z., Malkowski, P., Majcherczyk, T.: Application of the NATM method in the road tunneling works in difficult geological conditions - the Carpathian flysch. Tunn. Undergr. Space Technol. 74, 41–59 (2018). https://doi.org/10.1016/j.tust.2018.01.003

    Article  Google Scholar 

  • Oke, J., Vlachopoulos, N., Marinos, V.: The pre-support nomenclature and support selection methodology for temporary support systems within weak rock masses. J Geotech Geological Eng 32(1), 97–130 (2014)

    Article  Google Scholar 

  • Ozcelik, M.: Criteria for the selection of construction method at the Ovit Mountain Tunnel (Türkiye). KSCE J. Civ. Eng. 20(4), 1323–1328 (2016). https://doi.org/10.1007/s12205-015-0055-3

    Article  Google Scholar 

  • Palmström, A.: Recent developments in rock support estimates by the RMi. J Rock Mech Tunnelling Technology 6(1), 1–19 (2000)

    Google Scholar 

  • Palmström, A.: Combining the RMR, Q, and RMi classification systems. Tunn Underground Space Technol 24(4), 491–492 (2009)

    Article  Google Scholar 

  • Panthi, K.K., Basnet, C.B.: Evaluation of earthquake impact on magnitude of the minimum principal stress along a shotcrete lined pressure tunnel in Nepal. J Rock Mech Geotech Eng. 11, 920–934 (2019)

    Article  Google Scholar 

  • Sakcali, A., Yavuz, H.: Estimation of radial deformations around circular tunnels in weak rock masses through numerical modelling. Int. J. Rock Mech. Min. Sci. 123, 104092 (2019). https://doi.org/10.1016/j.ijrmms.2019.104092

    Article  Google Scholar 

  • Satici, O., Topal, T.: Assessment of damage zone thickness and wall convergence for tunnels excavated in strain-softening rock masses. Tunn. Undergr. Space Technol 108, 103722 (2021). https://doi.org/10.1016/j.tust.2020.103722

    Article  Google Scholar 

  • Song, J.S., Yoo, C.S.: Development of knowledge-based study on optimized NATM lining design system. J Korean Geosynthetic Soc 17(4), 251–265 (2018). https://doi.org/10.12814/jkgss.2018.17.4.251

    Article  Google Scholar 

  • Sulem, J., Panet, M., Guenot, A.: An analytical solution for time-dependent displacements in a circular tunnel. Int J Rock Mechanics, Mining Sci Geomechanics Abstracts 24, 155–164 (1987)

    Article  Google Scholar 

  • Swannell, N., Palmer, M., Barla, G., Barla, M.: Geotechnical risk management approach for TBM tunnelling in squeezing ground conditions. Tunn. Undergr. Space Technol. 57, 201–210 (2016). https://doi.org/10.1016/j.tust.2016.01.013

    Article  Google Scholar 

  • Taromi, M., Eftekhari, A., Hamidi, J.K., Aalianvari, A.: A discrepancy between observed and predicted NATM tunnel behaviors and updating: a case study of the Sabzkuh tunnel. Bull. Eng. Geol. Env. 76(2), 713–729 (2017). https://doi.org/10.1007/s10064-016-0862-x

    Article  Google Scholar 

  • Vlachopoulos, N., Diederichs, M.S.: Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels. Rock Mech. & Rock Eng. 42(2), 131–146 (2009)

    Article  Google Scholar 

  • Wang, J.-N.: Seismic design of tunnels: a state-of-the-art approach, Monograph, monograph 7. Parsons, Brinckerhoff, Quade and Douglas Inc, New York (1993)

    Google Scholar 

  • Wang, H.N., Zeng, G.S., Jiang, M.J.: Analytical stress and displacement around non-circular tunnels in semi-infinite ground. Appl. Math. Model. 63, 303–328 (2018). https://doi.org/10.1016/j.apm.2018.06.043

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X.F., Jiang, B.S., Zhang, Q., Lu, M.M., Chen, M.: Analytical solution of circular tunnel in elastic-viscoplastic rock mass. Latin American J Solids Structures 16(6), 210 (2019)

    Article  Google Scholar 

  • Yagiz, S., Gokceoglu, C., Sezer, E., Iplikci, S.: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Eng. Appl. Artif. Intell. 22(4–5), 808–814 (2009). https://doi.org/10.1016/j.engappai.2009.03.007

    Article  Google Scholar 

  • Yildirim, C., Tuysuz, O.: Estimation of the long-term slip, surface uplift and block rotation along the northern strand of the North Anatolian Fault Zone: inferences from geomorphology of the Almacık Block. Geomorphology 297, 55–68 (2017). https://doi.org/10.1016/j.geomorph.2017.08.038

    Article  Google Scholar 

  • Zhang, Q., Li, C., Min, M., Jiang, B.S., Yu, L.Y.: Elastoplastic analysis of circular openings in elasto-brittle-plastic rock mass based on logarithmic strain. Math. Probl. Eng. 2017, 1–9 (2017)

    MATH  Google Scholar 

  • Zhang, Q., Jiang, B.S., Wu, X.S., Zhang, H.Q., Han, L.J.: Elasto-plastic coupling analysis of circular openings in elasto-brittle-plastic rock mass. Theoret. Appl. Fract. Mech. 60, 60–67 (2012)

    Article  Google Scholar 

  • Zhang, Q., Jiang, B.S., Wang, S.L., Ge, X.R., Zhang, H.Q.: Elasto-plastic analysis of a circular opening in strain-softening rock mass. Int. J. Rock Mech. Min. Sci. 50, 38–46 (2012)

    Article  Google Scholar 

  • Zhang, Z.Q., Shi, X.Q., Wang, B., Li, H.Y.: Stability of NATM tunnel faces in soft surrounding rocks. Comput. Geotech. 96, 90–102 (2018). https://doi.org/10.1016/j.compgeo.2017.10.009

    Article  Google Scholar 

  • Zhang, Q., Zhang, C.H., Jiang, B.S., Li, N., Wang, Y.C.: Elastoplastic coupling solution of circular openings in strain-softening rock mass considering pressure-dependent effect. Int. J. Geomech. 18, 04017132 (2018)

    Article  Google Scholar 

  • Zou, J., Chen, G., Qian, Z.: Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Comput. Geotech. 106, 1–17 (2019)

    Article  Google Scholar 

  • Barton, N., Løset, F., Lien, R. and Lunde, J. Application of the Q-system in design decisions. In subsurface space, (ed. M. Bergman) 2, 553–561. New York: Pergamon. (1980)

  • Bieniawski, Z.T. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97–106. (1976) Cape Town: Balkema.

  • EWI and WIRKIR,. Tunneling in Moberg Formations, Orkustofnun National Energy Authority. (1972) (https://orkustofnun.is/gogn/Skyrslur/1972/OS-1972-Tunneling-Moberg-2.pdf). Accessed 1 Apr 2019

  • Fugro Sial.: T1 Tunnel Geological-Geotechnical Investigation Report. Fugro Sial Geosciences Consulting and Engineering Ltd. Ankara. (2019a)

  • Fugro Sial.: T1 Tunnel Project Report. Fugro Sial Geosciences Consulting and Engineering Ltd. Ankara. (2019b)

  • Grimstad, E., Barton, N. Updating the Q-System for NMT. Proc. Int. Symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes. 46–66. (1993) Oslo: Norwegian Concrete Assn.

  • Hoek, E., Practical Rock Engineering, p 341, (2007) https://www.rocscience.com/assets/resources/learning/hoek/Practical-Rock-Engineering-Full-Text.pdf

  • Hoek, E., Rock Support Interaction analysis for tunnels in weak rock masses, (2012) https://www.rocscience.com/documents/pdfs/rocnews/winter2012/Rock-Support-Interaction-Analysis-for-Tunnels-Hoek.pdf

  • Hoek, E. and Marinos, P., 2000. Predicting tunnel squeezing. Tunnels and Tunnelling International. Part 1 – November 2000, Part 2 – December 2000.

  • Hoek, E., Carranza-Torres, C., Diederichs, M.S., Corkum, B., Integration of geotechnical and structural design in tunnelling. In: Proceedings University of Minnesota 56th Annual Geotechnical Engineering Conference, 29 February 2008. Minneapolis, pp. 1–53. (2008) Available for downloading at Hoek’s Corner at <www.rocscience.com>.

  • Itasca, Flac3d User Manual, Getting Started. (2002)

  • Kastner, H.. Statics of tunnel and tunnel construction based on geomechanical knowledge. Second revised edition. (1971)

  • MTA (General Directorate of Mineral Research and Exploration), &nbsp;Geoscience map viewer and drawing editor, yerbilimleri.mta.gov.tr (2021)

  • Oke, J., Vlachopoulos, N., Diederichs, M.S., Improved input parameters and numerical analysis techniques for temporary support of underground excavations in weak rock. In: RockEng. Edmonton. (2012)

  • Oke J, Vlachopoulos N, Diederichs MS., The reduction of surface settlement by employing umbrella arch systems. In: GeoMontreal 2013a. Montreal: Canadian Geotechnical Society. (2013a)

  • Oke J, Vlachopoulos N, Diederichs MS., Modification of the supported longitudinal displacement profile for tunnel face convergence in weak rock. In: 47th US rock mechanics/geomechanics symposium. San Francisco: American Rock Mechanics Association. (2013)

  • Oke J, Vlachopoulos N, Diederichs MS., Semi-analytical model of an umbrella arch employed in hydrostatic tunnelling conditions. In: 48th US rock mechanics/ geomechanics symposium. Minneapolis: American Rock Mechanics Assoc. (2014)

  • O’Rourke, T.D., Guidelines for Tunnel Lining Design. ASCE Technical Committee tunn lining design Underground Technol Res Council. (1984)

  • O’Rourke, T.D., Goh, S.H., Menkiti, C.O., Mair, R.J., Highway tunnel performance during the 1999 Duzce earthquake. Proceedings of the Fifteenth Int Conference Soil Mech Geotech Eng, August 27_31, 2000. Istanbul, Türkiye. (2001)

  • Owen, G.N., Scholl, R.E., Earthquake engineering of large underground structures. Report no. FHWA_RD-80_195. Federal Highway Administration National Sci Foundation. (1981)

  • Penzien, J., Seismically -induced racking of tunnel linings. Int. J. Earthquake Eng. Struct. Dyn. 29, 683_691. (2000)

  • Rabcewicz, L.v., The New Austrian Tunn Method, Part One, Water Power, pp 453–457 (1964)

  • Rabcewicz, L.v., The New Austrian Tunnelling Method, Part Two, Water Power, pp 511–515 (1964b)

  • Rabcewicz, L.v., The New Austrian Tunnelling Method, Part Three, Water Power, pp 19–24 (1965)

  • Sakurai, A., Takahashi, T., Dynamic stresses of underground pipeline during earthquakes. Proceedings of the Fourth World Conference on Earthquake Engineering. (1969)

  • Terzaghi, K. Rock defects and loads on tunnel supports. In Rock tunneling with steel supports, (eds R. V. Proctor and T. L. White) 1, 17–99 (1946). Youngstown, OH: Commercial Shearing and Stamping Company.

  • Yuksel Proje, Karayolu ve Demiryolu Tünelleri ve Diğer Zemin Yapıları (Sektör: Ulaşım Tesisleri – A2) (2019)

Download references

Acknowledgements

The authors thank the General Directorate of TCDD (Turkish State Railway) and Fugro Sial Co. for their support. The authors also thank the anonymous reviewers and the editor for their great efforts on the paper.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [E. B. Aygar, S. Karahan, C. Gokceoglu]; methodology: [E. B. Aygar, S. Karahan]; formal analysis and investigation: [E. B. Aygar, C. Gokceoglu]; writing—original draft preparation: [E. B. Aygar, S. Gullu]; writing—review and editing: [C. Gokceoglu]; resources: [S. Karahan, S. Gullu]; supervision: [S. Gullu, C. Gokceoglu].

Corresponding author

Correspondence to Candan Gokceoglu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aygar, E.B., Karahan, S., Gullu, S. et al. Analytical and Numerical Analyses of the Support System for a Large-span Tunnel in Challenging and Seismically Active Ground Conditions. Transp. Infrastruct. Geotech. 10, 988–1031 (2023). https://doi.org/10.1007/s40515-022-00251-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40515-022-00251-5

Keywords

Navigation