Skip to main content
Log in

Cornell potential in generalized uncertainty principle formalism: the case of Schrödinger equation

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

The modified Schrödinger equation due to generalized uncertainty principle is considered with the Cornell potential. The problem is transformed into the momentum space and a quasi-exact analytical approach is used to report the solutions. The ground-state wave function as well as the set of equations determining the spectrum of the system are obtained and the special case of the vanishing minimal length parameter is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Phys. Rev. D 65, 125028 (2002)

    Article  MathSciNet  Google Scholar 

  2. Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)

    Article  Google Scholar 

  3. Nozari, K., Azizi, T.: Some aspects of minimal length quantum mechanics. Gen. Relativ. Gravit. 38, 735–742 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akhoury, R., Yao, Y.P.: Minimal length uncertainty relation and the hydrogen spectrum. Phys. Lett. B 572, 37–42 (2003)

  5. Haouat, S.: Schrödinger equation and resonant scattering in the presence ofa minimal length. Phys. Lett. B 729, 33–38 (2014)

  6. Oakes, Antonacci: T.L., Francisco, R.O., Fabris, J.C., Nogueira, J.A.: Ground state of the hydrogen atom via dirac equation in a minimal length scenario. Eur. Phys. J. C 73, 2495 (2013)

    Article  Google Scholar 

  7. Hassanabadi, H., Hooshmand, P., Zarrinkamar, S.: The generalized uncertainty principle and harmonic interaction in three spatial dimensions. Few-Body Syst 56(1), 19–27 (2015)

  8. Nozari, K., Karami, M.: Minimal length and generalized dirac equation. Mod. Phys. Lett. A 20, 3095–3104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nouicer, K.: Coulomb potential in one dimension with minimal length: a path integral approach. J. Math. Phys. 48, 112104 (2007) arXiv:quant-ph/0512003

  10. Bouaziz, D., Ferkous, N.: Hydrogen atom in momentum space with a minimal length. Phys. Rev. A 82, 022105 (2010)

    Article  Google Scholar 

  11. Zarrinkamar, S., Rajabi, A.A., Hassanabadi, H.: Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb-like tensor potential; The SUSY approach. Ann. Phys. 325, 2522 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, S.H.: Wave Equations in Higher Dimensions. Springer, Berlin (2011)

  13. Castro, L.B.: Relating pseudospin and spin symmetries through chiral transformation with tensor interaction. Phys. Rev. C 86, 052201 (2012)

    Article  Google Scholar 

  14. Hall, R., Saad, N.: Schrödinger spectrum generated by the Cornell potential. Open Phys. 13, 81 (2015)

  15. Chen, J.K.: Spectral method for the Cornell and screened Cornell potentials in momentum space. Phys. Rev. D 88, 076006 (2013)

    Article  Google Scholar 

  16. Patel, B., Vinodkumar, P.C.: Properties of \(Q{\bar{Q}}(Q\in b,c)\) mesons in Coulomb plus power potential (CPP\(_{\rm v}\)). J Phys. G: Nucl. Part. Phys. 36, 035003 (2009)

Download references

Acknowledgments

It is a great pleasure for authors to thank the referee for many useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jahankohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahankohan, K., Zarrinkamar, S. & Hassanabadi, H. Cornell potential in generalized uncertainty principle formalism: the case of Schrödinger equation. Quantum Stud.: Math. Found. 3, 109–114 (2016). https://doi.org/10.1007/s40509-015-0065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-015-0065-3

Keywords

Navigation