Skip to main content
Log in

Tolerance to water deficit in cowpea populations resulting from breeding program: detection by gas exchange and chlorophyll fluorescence

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cowpea is a crop that exercises social, economic and nutritional importance on the population of several countries due to grain production. This study aimed to (1) evaluate the effect of water deficit stress on gas exchange and chlorophyll fluorescence parameters in six populations, and (2) identify the better population to select plants for tolerance to water deficit stress, derived from crosses of the cowpea cultivars cultivated under irrigation and water deficit conditions. The experimental design was completely randomized composed of six populations, with two parents P1 and P2, and F1, F2, BC1 and BC2 generations derived from the cross between BR3-Tracuateua (sensitive to drought) and Pingo de ouro-1-2 (tolerant to drought). F2 generations showed higher values of net photosynthetic rate, stomatal conductance and water-use efficiency when these populations were exposed to water deficit. In case of chlorophyll fluorescence parameters under water deficit stress, F2 populations showed better results for effective quantum yield of PSII, photochemical quenching and apparent electron-transport rate, while lower values of non-photochemical quenching, relative energy excess at the PSII level and ratio between the apparent electron-transport rate and net photosynthetic rate. Our results on gas exchange and chlorophyll fluorescence revealed that the better performance under water deficit conditions was found in F2 generation, and this validated the breeding strategy used in this program aiming tolerance to water deficit, was successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acquaah, G. (2007). Principles of plant genetics and breeding. Oxford: Blackwell.

    Google Scholar 

  • Afzal, A., Gulzar, I., & Ashraf, M. (2014). Water deficit-induced regulation of growth, gas exchange, chlorophyll fluorescence, inorganic nutrient accumulation and antioxidative defense mechanism in mungbean [Vigna radiate (L.) Wilczek]. Journal Applied Botanyand Food Quality, 87(1), 147–156.

    Google Scholar 

  • Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions. Plant, Cell and Environment, 30(3), 258–270.

    Article  CAS  PubMed  Google Scholar 

  • Almeselmani, M. (2011). Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. Journalof Agricultural Science, 3(3), 127–133.

    Google Scholar 

  • Aragão, R. M., Silva, E. N., Vieira, C. F., & Silveira, J. A. G. (2012). High supply of NO3 mitigates salinity effects through an enhancement in the efficiency of photosystem II and CO2 assimilation in Jatropha curcas plants. Acta Physiologiae Plantarum, 34(6), 2135–2143.

    Article  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59(59), 89–113.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa, M. R., Silva, M. M. A., Willadino, L., Ulisses, C., & Camaral, T. R. (2014). Plant generation and enzymatic detoxification of reactive oxygen species. Ciência Rural, 44(3), 453–460.

    Article  CAS  Google Scholar 

  • Bastos, E. A., Nascimento, S. P., Silva, E. M., Freire Filho, F. R., & Gomide, R. L. (2011). Identification of cowpea genotypes for drought tolerance. Revista Ciência Agronômica, 42(1), 100–107.

    Article  Google Scholar 

  • Belko, N., Zaman-Allah, M., Cisse, N., Diop, N. N., Zombre, G., Ehlers, J. D., & Vadez, V. (2012). Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Functional Plant Biology, 39(4), 306–322.

    Article  Google Scholar 

  • Bertolli, S. C., Rapchan, G. L., & Souza, G. M. (2012). Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vigna unguiculata. Photosynthetica, 50(3), 329–336.

    Article  CAS  Google Scholar 

  • Blair, M. W., Galeano, C. H., Tovar, E., Torres, M. C. M., Castrillón, A. V., Beebe, S. E., & Rao, I. M. (2012). Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Molecular Breeding, 29(1), 71–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blatt, M. R. (2000). Ca2+ signaling and control of guard-cell volume in stomatal movements. Current Opinion in Plant Biology, 03(3), 196–204.

    Article  CAS  Google Scholar 

  • Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive. Crop and Pasture Science, 56(11), 1159–1168.

    Article  Google Scholar 

  • Bota, J., Medrano, H., & Flexas, J. (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist, 162(3), 671–681.

    Article  CAS  Google Scholar 

  • Burghardt, M., & Riederer, M. (2003). Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. Journal of Experimental Botany, 54(389), 1941–1949.

    Article  CAS  PubMed  Google Scholar 

  • Charzoulakis, K., Patakas, A., Kofidis, G., Bosabalidis, A., & Nastou, A. (2002). Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulturae, 95(1), 39–50.

    Article  Google Scholar 

  • Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L., et al. (2002). How plants cope with water stress in the field: Photosynthesis and growth. Annals of Botany, 89(7), 907–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan, R., Cheung, M. K., Bright, J., Henson, D., Hancock, J. T., & Neill, S. J. (2004). ABA, hydrogen peroxide, and nitric oxide signaling in stomatal guard cells. Journal of Experimental Botany, 55(395), 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Fang, X. W., Turner, N. C., Li, F. M., Li, W. J., & Guo, X. S. (2011). Caragana korshinskii seedlings maintain positive photosynthesis during short-term, severe drought stress. Photosynthetica, 49(4), 603–609.

    Article  CAS  Google Scholar 

  • FAO. (2013). Food and agriculture organization of the United Nation. In FAO statistical database. http://www.fao.org.

  • Flexas, J., Bota, J., Escalona, J. M., Sampol, B., & Medrano, H. (2002). Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29(4), 461–471.

    Article  Google Scholar 

  • Galmés, J., Ribas-Carbó, M., Medrano, H., & Flexas, J. (2010). Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. Journal of Experimental Botany, 62(2), 653–665.

    Article  PubMed  Google Scholar 

  • Gao, Q., Zhao, P., Zeng, X., Cai, X., & Shen, W. (2002). A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant, Cell and Environment, 25(11), 1373–1381.

    Article  Google Scholar 

  • Gill, S. S., & Tujeta, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Grassi, G., & Magnani, F. (2005). Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell and Environment, 28(7), 834–849.

    Article  CAS  Google Scholar 

  • Hamidou, F., Zombre, G., Guinko, S., Diouf, O., Diop, N. N., & Braconnier, S. (2007). Physiological, biochemical and agromorphological responses of five cowpea genotypes (Vigna unguiculata (L.) Walp.) to water deficit under glasshouse conditions. Biotechnologie, Agronomie, Société et Environnement, 11(3), 225–234.

    CAS  Google Scholar 

  • Hayatu, M., & Mukhtar, F. B. (2010). Physiological responses of some drought resistance cowpea genotypes (Vigna unguiculata (L.) Walp) to water stress. Bayero Journal of Pure Applied Sciences, 03(2), 69–75.

    Google Scholar 

  • Hong, S. S., & Xu, D. Q. (1999). Light-induced increase in chlorophyll fluorescence Fo, level and the reversible inactivation of PSII reaction centers in soybean leaves. Photosynthesis Research, 61(3), 269–280.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, A., Zhang, J., & Jiang, M. (2006). Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant and Cell Physiology, 47(11), 1484–1495.

    Article  CAS  PubMed  Google Scholar 

  • Leite, M. L., Rodrigues, J. D., & Virgens Filho, J. S. (2000). Effects of water deficit on cowpeas cv. EMAPA-821. III. Yield. Revista de Agricultura, 75(1), 9–20.

    Google Scholar 

  • Liberato, M. A. R., Gonçalves, J. F. C., Chevreuil, L. R., Nina Junior, A. R., Fernandes, A. V., & Santos Junior, U. M. (2006). Leaf water potential, gas exchange and chlorophyll a fluorescence in acariquara seedlings (Minquartia guianensis Aubl.) under water stress and recovery. Brazilian Journal of Plant Physiology, 18(2), 315–323.

    Article  CAS  Google Scholar 

  • Lim, C. W., Baek, W., Lim, S., & Lee, S. C. (2012). ABA signal transduction from ABA receptors to ion channels. Genes & Genomics, 34(4), 345–353.

    Article  CAS  Google Scholar 

  • Lobato, A. K. S., Santos Filho, B. G., Costa, R. C. L., Gonçalves-Vidigal, M. C., Moraes, E. C., Oliveira Neto, C. F., et al. (2009). Morphological, physiological and biochemical responses during germination of the cowpea (Vigna unguiculata cv. Pitiuba) seeds under salt stress. World Journal of Agricultural Sciences, 5(5), 590–596.

    CAS  Google Scholar 

  • Ma, C. C., Gao, Y. B., Guo, H. Y., & Wang, J. L. (2004). Photosynthesis, transpiration and water use efficiency of Caragana microphylla, C. intermedia and C. korshinskii. Photosynthetica, 42(1), 65–70.

    Article  CAS  Google Scholar 

  • Magalhães Filho, J. R., Amaral, L. R., Machado, D. F. S. P., Medina, C. L., & Machado, E. C. M. (2008). Water deficit, gas exchange and root growth in ‘Valencia’ orange tree budded on two rootstocks. Bragantia, 67(1), 75–82.

    Article  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51(345), 659–668.

    Article  CAS  PubMed  Google Scholar 

  • McEvoy, J. P., Gascon, J. A., Batista, V. S., & Brudvig, G. W. (2005). The mechanism of photosynthetic water splitting. Photochemical & Photobiological Sciences, 04(12), 940–949.

    Article  CAS  Google Scholar 

  • Mencuccini, M., Mambelli, S., & Comstock, J. (2000). Stomatal responsiveness to leaf water status in common bean (Phaseolus vulgaris L.) is a function of time of day. Plant, Cell and Environment, 23(10), 1109–1118.

    Article  Google Scholar 

  • Miralles, J., Martínez, J. A., Franco, J. A., & Bañón, S. (2011). Determining freezing injury from changes in chlorophyll fluorescence in potted oleander plants. Horticultural Science, 46(6), 895–900.

    Google Scholar 

  • Muchero, W., Ehlers, J. D., & Roberts, P. A. (2008). Seedling stage drought-induced phenotypes and drougth-responsive genes in diverse cowpea genotypes. Crop Science, 48(2), 541–552.

    Article  CAS  Google Scholar 

  • Pastenes, C., Pimentel, P., & Lillo, J. (2005). Leaf movements and photoinhibition in relation to water stress in field-grown beans. Journal of Experimental Botany, 56(411), 425–433.

    Article  CAS  PubMed  Google Scholar 

  • Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G. J., et al. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406(6797), 731–734.

    Article  CAS  PubMed  Google Scholar 

  • Percival, G. C., & Sheriffs, C. N. (2002). Identification of drought-tolerant woody perennials using chlorophyll fluorescence. Journal of Arboriculture, 28(5), 215–223.

    Google Scholar 

  • Saglama, A., Saruhanb, N., Terzia, R., & Kadioglua, A. (2011). The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress. Russian Journal of Plant Physiology, 58(1), 60–68.

    Article  Google Scholar 

  • Santos, M. G., Ribeiro, R. V., Machado, E. C., & Pimentel, C. (2009). Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. Biologia Plantarum, 53(2), 229–236.

    Article  CAS  Google Scholar 

  • Santos, J. R., Oliveira, J. R. L. F. G., Sousa, J. P. S., Silva Junior, C. D., & Sarmento, C. R. (2014). Performance of promissing sugar cane genotypes using physiological and biometrical tools. Bioscience Journal, 30(3), 380–389.

    Google Scholar 

  • Sawada, S., Kuninaka, M., Watanabe, K., Sato, A., Kawamura, H., Komine, K., et al. (2001). The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment. Plant and Cell Physiology, 42(10), 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, K. A., Brothers, M. E., & Kelly, J. D. (1997). Marker assisted selection to improve drought resistance in common bean. Crop Science, 37(1), 51–60.

    Article  CAS  Google Scholar 

  • Scholander, P. F., Hammel, H. T., Hemmingsen, E. A., & Bradstreet, E. D. (1964). Hydrostatic pressure and osmotic potential of leaves in mangroves and some other plants. Proceeding of Natural Academic Science, 52(1), 119–125.

    Article  CAS  Google Scholar 

  • Schroeder, J. I., Kwak, J. M., & Allen, G. J. (2001). Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature, 410(6826), 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Silva, C. E. M., Gonçalves, J. F. C., & Feldpausch, T. R. (2008). Water-use efficiency of tree species following calcium and phosphorus application on an abandoned pasture, central Amazonia, Brazil. Environmental and Experimental Botany, 64(2), 189–195.

    Article  Google Scholar 

  • Silva, E. N., Ribeiro, R. V., Ferreira-Silva, S. L., Vieira, A. S., Ponte, L. F. A., & Silveira, J. A. G. (2012). Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress. Biomass and Bioenergy, 45(270), 270–279.

    Article  CAS  Google Scholar 

  • Silveira, J. A. G., Costa, R. C. L., & Oliveira, J. T. A. (2001). Drought-induced effects and recovery of nitrate assimilation and nodule activity in cowpea plants inoculated with Bradyrhizobium spp. under moderate nitrate level. Brazilian Journal of Microbiology, 32(3), 187–194.

    Article  Google Scholar 

  • Souza, R. P., Machado, E. C., Silva, J. A. B., Lagôa, A. M. M. A., & Silveira, J. A. G. (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 51(1), 45–56.

    Article  CAS  Google Scholar 

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (2006). Principles and procedures of statistics: A biometrical approach. Moorpark: Academic Internet Publishers.

    Google Scholar 

  • Tang, A. C., Kawamitsu, Y., Kanechi, M., & Boyer, J. S. (2002). Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Annals of Botany, 89(7), 861–870.

    Article  PubMed  Google Scholar 

  • Teófilo, E. M., Paiva, J. B., & Medeiros Filho, S. (2001). Artificial pollination in cowpea (Vigna unguiculata (L.) Walp). Ciência e Agrotecnologia, 25(1), 220–223.

    Google Scholar 

  • Tezara, W., Driscoll, S., & Lawlor, D. W. (2008). Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. Photosynthetica, 46(1), 127–134.

    Article  CAS  Google Scholar 

  • Tezara, W., Mitchell, V. J., Driscoll, S. D., & Lawlor, D. W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756), 914–917.

    Article  CAS  Google Scholar 

  • Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation Science, 09(4), 289–308.

    Article  Google Scholar 

  • Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45(4), 523–539.

    Article  CAS  PubMed  Google Scholar 

  • Ye, N., Zhu, G., Liu, Y., Li, Y., & Zhang, J. (2011). ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and Cell Physiology, 52(4), 689–698.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D. W., & Song, C. P. (2001). Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology, 126(4), 1438–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlatev, Z. S. (2013). Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emirates Journal of Food and Agriculture, 25(12), 1014–1023.

    Article  Google Scholar 

  • Zlatev, Z. S., & Yordanov, I. T. (2004). Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarian Journal of Plant Physiology, 30(3–4), 3–18.

    CAS  Google Scholar 

Download references

Acknowledgements

This research had financial supports from Fundação Amazônia Paraense de Amparo à Pesquisa (FAPESPA/Brazil), Universidade Federal Rural da Amazônia (UFRA/Brazil) and Conselho Nacional de Pesquisa (CNPq/Brazil) to Lobato AKS. In addition, Pereira TS, Lima MDR and Paula LS were supported by undergraduate scholarship also from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan K. S. Lobato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, T.S., Lima, M.D.R., Paula, L.S. et al. Tolerance to water deficit in cowpea populations resulting from breeding program: detection by gas exchange and chlorophyll fluorescence. Ind J Plant Physiol. 21, 171–178 (2016). https://doi.org/10.1007/s40502-016-0218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0218-3

Keywords

Navigation