Skip to main content
Log in

Investigating primary sites of damage in photosystem II in response to high temperature

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The quick and non-invasive technique of Chlorophyll-a (Chl-a) fluorescence was used to investigate the primary site of damage in photosystem II in response to high temperature stress. Based on the changes observed in several parameters deduced from Chl-a fluorescence curves after giving heat treatment at 40 °C for 2–30 min it was observed that the sequence of events in PS II under heat stress was as follows: inhibition of OEC—decrease in electron donation capacity—increase in thermal dissipation—increase in number of inactive RC—dissociation of LHCII—decrease in the efficiency of primary charge separation, ultimately leading to inhibition of primary photochemistry. Further it was concluded that at 40 °C, the acceptor side of PSII [1–Vj and PHI(Eo)] showed insignificant changes, which indicated that acceptor side of PSII is not a major target site of heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allakhverdiev, S. I., & Murata, N. (2004). Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta, 1657, 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Babani, F., & Lichtenthaler, H. K. (1996). Light-induced and age dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. Journal of Plant Physiology, 148, 555–566.

    Article  CAS  Google Scholar 

  • Barra, M., Haumann, M., & Dau, H. (2005). Specific loss of the extrinsic 18 kDa protein from photosystem II upon heating to 47°C causes inactivation of oxygen evolution likely due to Ca release from the Mn-complex. Photosynthesis Research, 84, 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L. S., & Cheng, L. (2009). Photosystem 2 is more tolerant to high temperature in apple [Malus domestica Borkh] leaves than in fruit peel. Photosynthetica, 47, 112–120.

    Article  CAS  Google Scholar 

  • Christen, D., Schőnmanna, S., Jermini, M., Strasser, R. J., & Defago, G. (2007). Characterization and early detection of grapevine [Vitis vinifera] stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environmental and Experimental Botony, 60, 504–514.

    Article  CAS  Google Scholar 

  • Coleman, W. J., Govindjee, & Gutowsky, H. S. (1988). The effect of chloride on thermal inactivation of oxygen evolution. Photosynthesis Research, 16, 261–276.

    Article  CAS  PubMed  Google Scholar 

  • Enami, I., Kitamura, M., Tomo, T., Isokawa, Y., Ohta, H., & Katoh, S. (1994). Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochimica et Biophysica Acta, 1186, 52–58.

    Article  CAS  Google Scholar 

  • Force, L., Critchley, C., & Van rensen, J. J. S. (2003). New fluorescence parameters for monitoring photosynthesis in plants 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynthesis Research, 78, 17–33.

    Article  CAS  PubMed  Google Scholar 

  • Goncalves, J. F. C., Santos, U. M, Jr, Adamir, R. N, Jr, & Chevreuil, L. R. (2007). Energetic flux and performance index in Copaiba [Copaifera multijuga Hayne] and Mahogany [Swietenia macrophylla King] seedlings grown under two irradiance environments. Brazilain Journal of Plant Physiology, 19, 171–184.

    Google Scholar 

  • Gounaris, K., Brain, A. R. R., Quinn, P. J., & Williams, W. P. (1984). Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochimica et Biophysica Acta, 766, 198–208.

    Article  CAS  Google Scholar 

  • Havaux, M. (1993). Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Science, 94, 19–33.

    Article  CAS  Google Scholar 

  • Jafarinia, M., & Shariati, M. (2012). Effects of salt stress on photosystem II of canola plant (Barassica napus, L.) probing by chlorophyll a fluorescence measurements. Iranian Journal of Science and Technology transaction A, 36, 71–76.

    CAS  Google Scholar 

  • Jiang, C. D., Gao, H. Y., & Zou, Q. (2003). Changes of donor and acceptor side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 41(2), 267–271.

    Article  CAS  Google Scholar 

  • Kalaji, H. M., Govindjee, Bosa, K., Kościelniakd, J., & Żuk, G. K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64–72.

    Article  CAS  Google Scholar 

  • Kalaji, H. M., Schansker, G., et al. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynthesis Research, 122, 121–158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komayama, K., Khatoon, M., Takenaka, D., Horie, J., Yamashita, A., Yoshioka, M., et al. (2007). Quality control of photosystem II: Cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochimica et Biophysica Acta, 1767, 838–846.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, S., Jajoo, A., Mehta, P., & Bharti, S. (2011a). Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves [Triticum aestivum]. Plant Biology, 13, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, S., Singh, P., Mehta, P., & Jajoo, A. (2011b). Effects of high temperature and low pH on photosystem 2 photochemistry in spinach thylakoid membranes. Biologia Plantarum, 55(4), 747–751.

    Article  CAS  Google Scholar 

  • Mehta, P., Jajoo, A., Mathur, S., & Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48, 16–20.

    Article  CAS  PubMed  Google Scholar 

  • Misra, A. N., Srivastava, A., & Strasser, R. J. (2001). Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. Journal of Plant Physiology, 158, 1173–1181.

    Article  CAS  Google Scholar 

  • Morales, F. F., Aguilar, M. I., King, D. B., & Lotina, H. B. (2013). Derivatives of diterpen labdane-8a,15-diol as photosynthetic inhibitors in spinach chloroplasts and growth plant inhibitors. Journal of Photochemistry Photobiology B Biology, 125, 42–50.

    Article  Google Scholar 

  • Pang, T., Liu, J., Liu, Q., Lin, W. (2011) Changes of photosynthetic behaviors in Kappaphycus alvarezii infected by epiphyte. Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine. Article ID 658906. doi:10.1155/2011/658906.

  • Pospišil, P., Haumann, M., Dittmer, J., Sole, V. A., & Dau, H. (2003). Stepwise titration of the titration of the Tetra-Manganese complex of photosystem II to a binuclear Mn2(µ-O)2 complex in response to a temperature jump: A time-resolved structural investigation employing X-ray absorption spectroscopy. Biophysical Journal, 84, 1370–1386.

    Article  PubMed Central  PubMed  Google Scholar 

  • Slabbert, R. M., & Krüger, G. H. J. (2011). Assessment of changes in photosystem II structure and function as affected by water deficit in Amaranthus hypochondriacus L. and Amaranthus hybridus L. Plant Physiology and Biochemistry, 49, 978–984.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, A., Guissé, B., Greppin, H., & Strasser, R. J. (1997). Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta, 1320, 95–106.

    Article  CAS  Google Scholar 

  • Stirbet, A., & Govindjee, (2011). On the relation between the Kautsky effect [chlorophyll a fluorescence induction] and photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry Photobiology B Biology, 104, 236–257.

    Article  CAS  Google Scholar 

  • Stirbet, A. D., & Strasser, R. J. (1996). Numerical simulation of the in vivo fluorescence in plants. Mathematics and computers in simulation, 42, 245–253.

    Article  Google Scholar 

  • Strasser, R. J., & Tsimilli, M. M. (2001). Stress in plants from daily rhythm to global changes, detected and quantified by the JIP-test. Chim Nouvelle [SRC], 75, 3321–3326.

    Google Scholar 

  • Strasser, R. J., Tsimilli, M. M., & Srivastava, A. (2004). Analysis of chlorophyll a fluorescence transient. In G. Papageorgiou & Govindjee (Eds.), Advances in photosynthesis and respiration: Chlorophyll a fluorescence: A signature of photosynthesis (pp. 321–362). Dordrecht: Springer.

    Google Scholar 

  • Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z., & Congming, L. C. (2007). Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiology, 143, 629–638.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari, A., Jajoo, A., & Bharti, S. (2008a). Heat-induced changes in the EPR signal of tyrosine D (YOX): A possible role of cytochrome b559. Journal of Bioenergetics Biomembranes, 40, 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, A., Jajoo, A., & Bharti, S. (2008b). Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membranes. Photochemical & Photobiological Sciences, 7, 485–491.

    Article  CAS  Google Scholar 

  • Wen, X., Gong, H., & Lu, C. (2005). Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina pletensis. Plant Science, 168, 1471–1476.

    Article  CAS  Google Scholar 

  • Xia, J. R., Li, V. J., & Zou, D. H. (2004). Effect of saliny stress on PS II in ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany, 80, 129–137.

    Article  CAS  Google Scholar 

  • Yamane, Y., Kashino, Y., Koike, H., & Satoh, K. (1998). Effects of high temperature on the photosynthetic systems in spinach oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynthesis Search, 57, 51–59.

    Article  CAS  Google Scholar 

  • Yan, K., Chen, P., Shao, H., Shao, C., Zhao, S., & Brestic, M. (2013). Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS One, 8(5), 62100.

    Article  Google Scholar 

Download references

Acknowledgments

Support from University Grant Commission (No. F.5-26/2007(BSR) to DA and Department of Science and Technology (DST/RUS//RFBR/P-173) to AJ is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Jajoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, D., Jajoo, A. Investigating primary sites of damage in photosystem II in response to high temperature. Ind J Plant Physiol. 20, 304–309 (2015). https://doi.org/10.1007/s40502-015-0176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-015-0176-1

Keywords

Navigation