Skip to main content

Advertisement

Log in

67-kDa Laminin Receptor Mediates the Beneficial Effects of Green Tea Polyphenol EGCG

  • Food Factors: Molecular Targets, mechanisms, pharmacology and in vivo efficacy (D-X Hou, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Green tea is one of the most consumed beverages in the world. Through in vivo models and clinical trials, several studies have shown the beneficial effects of green tea. Epidemiological studies have revealed that green tea consumption is negatively correlated with the risk of cardiovascular diseases, stroke and cancer; however, little is known about the underlying molecular mechanisms.

Recent Findings

(−)-Epigallocatechin-3-O-gallate (EGCG) is one of the major bioactive compounds in green tea, and several studies emphasise its central role in the beneficial effects of green tea. It has been demonstrated that the 67-kDa laminin receptor, a non-integrin laminin receptor, mediates the beneficial effects of EGCG through cyclic guanosine monophosphate–dependent mechanisms.

Summary

In this review, we showed the role of 67LR as the sensor of the EGCG and its downstream cascade, and this review provides the recent findings in the mechanism of the beneficial effect of EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yang CS, Chung JY, Yang G, Chhabra SK, Lee MJ. Tea and tea polyphenols in cancer prevention. J Nutr. 2000;130(2S Suppl):472S–8S.

    CAS  PubMed  Google Scholar 

  2. Kumazoe M, Hiroi S, Tanimoto Y, Miyakawa J, Yamanouchi M, Suemasu Y, et al. Cancer cell selective probe by mimicking EGCG. Biochem Biophys Res Commun. 2020;525(4):974–81.

    CAS  PubMed  Google Scholar 

  3. Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis. 1998;19(4):611–6.

    CAS  PubMed  Google Scholar 

  4. Lee MS, Shin Y, Jung S, Kim Y. Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice. Food Nutr Res. 2017;61(1):1325307.

    PubMed  PubMed Central  Google Scholar 

  5. Matsuo N, Yamada K, Shoji K, Mori M, Sugano M. Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship. Allergy. 1997;52(1):58–64.

    CAS  PubMed  Google Scholar 

  6. Yang F, de Villiers WJ, McClain CJ, Varilek GW. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr. 1998;128(12):2334–40.

    CAS  PubMed  Google Scholar 

  7. Yang CS, Wang H. Cancer therapy combination: green tea and a phosphodiesterase 5 inhibitor? J Clin Invest. 2013;123(2):556–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Forester SC, Lambert JD. Lambert. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res. 2011;55(6):844–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. 1998;129(2):173–9.

    CAS  PubMed  Google Scholar 

  10. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.

    CAS  PubMed  Google Scholar 

  11. Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. 2014;289(4):2457–68.

    PubMed  Google Scholar 

  12. Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol. 2004;11(4):380–1.

    CAS  PubMed  Google Scholar 

  13. Umeda D, Yano S, Yamada K, Tachibana H. Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem. 2008;283(6):3050–8.

  14. Jackers P, Minoletti F, Belotti D, Clausse N, Sozzi G, Sobel ME, et al. Isolation from a multigene family of the active human gene of the metastasis-associated multifunctional protein 37LRP/p40 at chromosome 3p21.3. Oncogene. 1996;13(3):495–503.

    CAS  PubMed  Google Scholar 

  15. Liu L, et al. Hypoxia-mediated up-regulation of MGr1-Ag/37LRP in gastric cancers occurs via hypoxia-inducible-factor 1-dependent mechanism research article and contributes to drug resistance. J Int Cancer. 2009;124(7):1707–15.

    CAS  Google Scholar 

  16. Scheiman J, Tseng JC, Zheng Y, Meruelo D. Multiple functions of the 37/67-kd laminin receptor make it a suitable target for novel cancer gene therapy. Mol Ther. 2009;18(1):63–74.

    PubMed  PubMed Central  Google Scholar 

  17. al-Saleh W, Delvenne P, van den Brule FA, Menard S, Boniver J, Castronovo V. Expression of the 67 KD laminin receptor in human cervical preneoplastic and neoplastic squamous epithelial lesions: an immunohistochemical study. J Pathol. 1997;181(3):287–93.

    CAS  PubMed  Google Scholar 

  18. Viacava P, Naccarato AG, Collecchi P, Ménard S, Castronovo V, Bevilacqua G. The spectrum of 67-kD laminin receptor expression in breast carcinoma progression. J Pathol. 1997;182(1):36–44.

    CAS  PubMed  Google Scholar 

  19. Sanjuan X, et al. Overexpression of the 67-kD laminin receptor correlates with tumor progression in human colorectal carcinoma. J Pathol. 1996;179(4):376–80.

    CAS  PubMed  Google Scholar 

  20. Li D, Chen J, Gao Z, Li X, Yan X, Xiong Y, et al. 67-kDa laminin receptor in human bile duct carcinoma. Eur Surg Res. 2009;42(3):168–73.

    CAS  PubMed  Google Scholar 

  21. Shammas MA, Neri P, Koley H, Batchu RB, Bertheau RC, Munshi V, et al. Specific killing of multiple myeloma cells by (−)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood. 2006;108(8):2804–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Britschgi A, Simon HU, Tobler A, Fey MF, Tschan MP. Epigallocatechin-3-gallate induces cell death in acute myeloid leukaemia cells and supports all-trans retinoic acid-induced neutrophil differentiation via death-associated protein kinase 2. Br J Haematol. 2010;149(1):55–64.

    CAS  PubMed  Google Scholar 

  23. Tsukamoto S, Huang Y, Kumazoe M, Lesnick C, Yamada S, Ueda N, et al. Sphingosine Kinase-1 protects multiple myeloma from apoptosis driven by Cancer-specific inhibition of RTKs. Mol Cancer Ther. 2015;14(10):2303–12.

  24. Kumazoe M, Tsukamoto S, Lesnick C, Kay NE, Yamada K, Shanafelt TD, et al. Vardenafil, a clinically available phosphodiesterase inhibitor, potentiates the killing effect of EGCG on CLL cells. Br J Haematol. 2015;168(4):610–3.

    CAS  PubMed  Google Scholar 

  25. Byun EH, Fujimura Y, Yamada K, Tachibana H. TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J Immunol. 2010;185(1):33–45.

  26. Byun EH, Omura T, Yamada K, Tachibana H. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR2 signaling induced by peptidoglycan through the polyphenol sensing molecule 67-kDa laminin receptor. FEBS Lett. 2011;585(5):814–20.

    CAS  PubMed  Google Scholar 

  27. Kumazoe M, Yamashita M, Nakamura Y, Takamatsu K, Bae J, Yamashita S, et al. Green tea polyphenol EGCG Upregulates Tollip expression by suppressing Elf-1 expression. J Immunol. 2017;199(9):3261–9.

    CAS  PubMed  Google Scholar 

  28. Kumazoe M, Nakamura Y, Yamashita M, Suzuki T, Takamatsu K, Huang Y, et al. Green tea polyphenol Epigallocatechin-3-gallate suppresses toll-like receptor 4 expression via up-regulation of E3 ubiquitin-protein ligase RNF216. J Biol Chem. 2017;292(10):4077–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Holy EW, Stämpfli SF, Akhmedov A, Holm N, Camici GG, Lüscher TF, et al. Laminin receptor activation inhibits endothelial tissue factor expression. J Mol Cell Cardiol. 2010;48(6):1138–45.

    CAS  PubMed  Google Scholar 

  30. Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, Ma WY, et al. (−)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 2006;66(18):9260–9.

    CAS  PubMed  Google Scholar 

  31. Shim JH, Choi HS, Pugliese A, Lee SY, Chae JI, Choi BY, et al. (−)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J Biol Chem. 2008;283(42):28370–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shanafelt TD, Call TG, Zent CS, LaPlant B, Bowen DA, Roos M, et al. Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J Clin Oncol. 2009;27(23):3808–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gloe T, Riedmayr S, Sohn HY, Pohl U. The 67-kDa laminin-binding protein is involved in shear stressdependent endothelial NO synthase expression. J Biol Chem. 1999;274(23):15996–6002.

    CAS  PubMed  Google Scholar 

  34. •• Kumazoe M, Sugihara K, Tsukamoto S, Huang Y, Tsurudome Y, Suzuki T, et al. 67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis. J Clin Invest. 2013;123(2):787–99. This article showed the role of cGMP in EGCG-induced cancer cell death.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsukamoto S, Hirotsu K, Kumazoe M, Goto Y, Sugihara K, Suda T, et al. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem J. 2012;443(2):525–34.

    CAS  PubMed  Google Scholar 

  36. Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol. 1992;66:4992–5001.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumazoe M, Kim Y, Bae J, Takai M, Murata M, Suemasu Y, et al. Phosphodiesterase 5 inhibitor acts as a potent agent sensitizing acute myeloid leukemia cells to 67-kDa laminin receptor-dependent apoptosis. FEBS Lett. 2013;587(18):3052–7.

    CAS  PubMed  Google Scholar 

  38. Huang Y, Kumazoe M, Bae J, Yamada S, Takai M, Hidaka S, et al. Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells. Oncol Rep. 2015;34(3):1162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bae J, Kumazoe M, Takeuchi C, Hidaka S, Fujimura Y, Tachibana H. Epigallocatechin-3-O-gallate induces acid sphingomyelinase activation through activation of phospholipase C. Biochem Biophys Res Commun. 2019;520(1):186–91.

    CAS  PubMed  Google Scholar 

  40. •• Tsukamoto S, Huang Y, Umeda D, Yamada S, Yamashita S, Kumazoe M, et al. 67-kDa laminin receptor-dependent protein phosphatase 2A (PP2A) activation elicits melanoma-specific antitumor activity overcoming drug resistance. J Biol Chem. 2014;289(47):32671–81. This article showed the mechanisms in the inhibitory effect of EGCG on cancer cell growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bae J, Kumazoe M, Murata K, Fujimura Y, Tachibana H. Procyanidin C1 Inhibits Melanoma Cell Growth by Activating 67-kDa Laminin Receptor Signaling. Mol Nutr Food Res. 2020;64(7):e1900986.

    PubMed  Google Scholar 

  42. Naganuma T, Kuriyama S, Kakizaki M, Sone T, Nakaya N, Ohmori-Matsuda K, et al. Green tea consumption and hematologic malignancies in Japan: the Ohsaki study. Am J Epidemiol. 2009;170(6):730–8. https://doi.org/10.1093/aje/kwp187.

    Article  PubMed  Google Scholar 

  43. Guo Z, Jiang M, Luo W, Zheng P, Huang H, Sun B. Association of Lung Cancer and Tea-Drinking Habits of Different Subgroup Populations: Meta-Analysis of Case-Control Studies and Cohort Studies. Iran J Public Health. 2019;48(9):1566–76.

    PubMed  PubMed Central  Google Scholar 

  44. Kokubo Y, Iso H, Saito I, Yamagishi K, Yatsuya H, Ishihara J, et al. The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: the Japan public health center-based study cohort. Stroke. 2013;44(5):1369–74.

    CAS  PubMed  Google Scholar 

  45. Lee J, Kim Y. Association between green tea consumption and risk of stroke in middle-aged and older Korean men: the health examinees (HEXA) study. Prev Nutr Food Sci. 2019;24(1):24–31.

    PubMed  PubMed Central  Google Scholar 

  46. Pang J, Zhang Z, Zheng T, Yang YJ, Li N, Bai M, et al. Li Q5, Zhang B. association of green tea consumption with risk of coronary heart disease in Chinese population. Int J Cardiol. 2015;179:275–8.

    PubMed  Google Scholar 

  47. Shirai Y, Kuriki K, Otsuka R, Kato Y, Nishita Y, Tange C, et al. Association between green tea intake and risk of cognitive decline, considering glycated hemoglobin level, in older Japanese adults: the NILS-LSA study. Nagoya J Med Sci. 2019;81(4):655–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Park M, Yamada H, Matsushita K, Kaji S, Goto T, Okada Y, et al. Green tea consumption is inversely associated with the incidence of influenza infection among schoolchildren in a tea plantation area of Japan. J Nutr. 2011;141(10):1862–70.

    CAS  PubMed  Google Scholar 

  49. McLarty J, Bigelow RL, Smith M, Elmajian D, Ankem M, Cardelli JA. Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res (Phila). 2009;2(7):673–82.

    CAS  Google Scholar 

  50. Gianpaolo P, Vittorio M, Anne V, Konstantinos S, Alberto T. Green tea catechins for chemoprevention of prostate cancer in patients with histologically-proven HG-PIN or ASAP. Concise review and meta-analysis Arch Ital Urol Androl. 2019 Oct 2;91(3). https://doi.org/10.4081/aiua.2019.3.153.

  51. • Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, Bowen DA, et al. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 2013;119(2):363–70. This article indicated the clinical effect of EGCG in the patients with CLL.

    CAS  PubMed  Google Scholar 

  52. Gross G, Meyer KG, Pres H, Thielert C, Tawfik H, Mescheder A. A randomized, double-blind, four-arm parallel-group, placebo-controlled phase II/III study to investigate the clinical efficacy of two galenic formulations of Polyphenon E in the treatment of external genital warts. J Eur Acad Dermatol Venereol. 2007;21(10):1404–12.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Mana Miyabe for Figure illustration.

Funding

This work was supported in part by JSPS KAKENHI, grant 22228002 and JP15H02448, to H. Tachibana. This work was also supported in part by a grant-in-aid for JSPS KAKENHI, grant JP15K18821, to M. Kumazoe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Tachibana.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Food Factors: Molecular Targets, mechanisms, pharmacology and in vivo efficacy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumazoe, M., Fujimura, Y. & Tachibana, H. 67-kDa Laminin Receptor Mediates the Beneficial Effects of Green Tea Polyphenol EGCG. Curr Pharmacol Rep 6, 280–285 (2020). https://doi.org/10.1007/s40495-020-00228-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-020-00228-3

Keywords

Navigation