Skip to main content

Advertisement

Log in

LC–MS-Based Metabolomics in the Study of Drug-Induced Liver Injury

  • Pharmacometabolomics and Toxicometabolomics (Chi Chen, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolomics is the systematic and comparative study of the levels of small-molecule metabolites in samples under various conditions. In biological system, metabolites play a critical role in a diversity of cellular functions. Metabolomics has been widely employed in toxicology and other fields. The purpose of this review is to summarize recent literatures on the application of LC–MS-based metabolomics in drug bioactivation and drug-induced liver injury (DILI) and to discuss their challenges in the field of toxicology.

Recent Findings

The emerging metabolomics could provide us a comprehensive view of novel biochemical sequelae in the cells, tissues, and organisms following toxicant administration. This article reviews LC–MS-based metabolomics in identification of biomarkers of drug toxicity and elucidating mechanisms of toxicity reported in recent years. This review also discusses the application of metabolomics combined with genomics or proteomics in the research field of DILI.

Summary

LC–MS-based metabolomics has a great potential in drug metabolism, identification of biomarkers of cause and/or effect, and revealing the novel mechanisms of drug toxicity. In the future, metabolomics integrating with other omics can serve as an effective tool for investigating the mechanisms of drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AcHZ:

Acetylhydrazine

AGM:

Agomelatine

ALAS:

Aminolevulinic acid synthase

ALA:

Aminolevulinic acid

ALT:

Alanine aminotransferase

APAP:

Acetaminophen

Cd:

Cadmium

CYP450:

Cytochromes P450

DILI:

Drug-induced liver injury

ESI:

Electrospray ionization

GSH:

Glutathione

HLM:

Human liver microsomes

hPXR:

Pregnane X receptor humanized

INH:

Isoniazid

MDA:

Multivariate data analysis

MDF:

Mass defect filtering

MRM:

Multiple reaction monitoring

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

OPLS-DA:

Orthogonal projection to latent structures-discriminant analysis

PMCol:

Pentamethyl-6-chromanol

PPIX:

Protoporphyrin IX

QTOFMS:

Quadrupole time of flight mass spectrometry

RIF:

Rifampicin

UPLC:

Ultra-performance liquid chromatography

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.

    Article  CAS  PubMed  Google Scholar 

  2. • Gonzalez FJ, Fang ZZ, Ma X. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2015;11:869–81. This paper reviews the application of metabolomics in xenobiotic metabolism and toxicity by the use of genetically modified mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. •• Bouhifd M, Hartung T, Hogberg HT, Kleensang A, Zhao L. Review: toxicometabolomics. J Appl Toxicol. 2013;33:1365–83. This review summarizes the status of metabolomics technologies and principles, their uses in toxicology till 2013 and provides a comprehensive overview on pathway identification, metabolomics and bioinformatics.

    Article  CAS  PubMed  Google Scholar 

  4. O'Connell TM, Watkins PB. The application of metabonomics to predict drug-induced liver injury. Clin Pharmacol Ther. 2010;88:394–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yu M, Zhu Y, Cong Q, Wu C. Metabonomics research progress on liver diseases. Can J Gastroenterol Hepatol. 2017;2017:8467192.

    Article  Google Scholar 

  6. Mishur RJ, Rea SL. Applications of mass spectrometry to metabolomics and metabonomics: detection of biomarkers of aging and of age-related diseases. Mass Spectrom Rev. 2012;31:70–95.

    Article  CAS  PubMed  Google Scholar 

  7. Larrey D. Drug-induced liver diseases. J Hepatol. 2000;32:77–88.

    Article  CAS  PubMed  Google Scholar 

  8. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 1995;333:1118–27.

    Article  CAS  PubMed  Google Scholar 

  9. Navarro VJ, Senior JR. Drug-related hepatotoxicity. N Engl J Med. 2006;354:731–9.

    Article  CAS  PubMed  Google Scholar 

  10. Welch KD, Reilly TP, Bourdi M, Hays T, Pise-Masison CA, Radonovich MF, et al. Genomic identification of potential risk factors during acetaminophen-induced liver disease in susceptible and resistant strains of mice. Chem Res Toxicol. 2006;19:223–33.

    Article  CAS  PubMed  Google Scholar 

  11. Welch KD, Wen B, Goodlett DR, Yi EC, Lee H, Reilly TP, et al. Proteomic identification of potential susceptibility factors in drug-induced liver disease. Chem Res Toxicol. 2005;18:924–33.

    Article  CAS  PubMed  Google Scholar 

  12. Eun JW, Bae HJ, Shen Q, Park SJ, Kim HS, Shin WC, et al. Characteristic molecular and proteomic signatures of drug-induced liver injury in a rat model. J Appl Toxicol: JAT. 2015;35:152–64.

    Article  CAS  PubMed  Google Scholar 

  13. Aithal GP, Grove JI. Genome-wide association studies in drug-induced liver injury: step change in understanding the pathogenesis. Semin Liver Dis. 2015;35:421–31.

    Article  PubMed  Google Scholar 

  14. Bell LN, Vuppalanchi R, Watkins PB, Bonkovsky HL, Serrano J, Fontana RJ, et al. Serum proteomic profiling in patients with drug-induced liver injury. Aliment Pharmacol Ther. 2012;35:600–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev. 2007;39:581–97. This review describes and discuss the applicable approaches of using LC-MS-base metabolomic techniques to resolve practical issues in drug metabolism for the first time

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Fang ZZ, Gonzalez FJ. LC-MS-based metabolomics: an update. Arch Toxicol. 2014;88:1491–502. This paper updates the application of liquid chromatography-mass spectrometry (LC-MS)-based metabolomics in multiple research fields, especially when combined with other technologies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP. Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Engl. 2010;49:5426–45.

    Article  CAS  PubMed  Google Scholar 

  18. Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics. 2006;6:4716–23.

    Article  CAS  Google Scholar 

  19. Issaq HJ, Fox SD, Chan KC, Veenstra TD. Global proteomics and metabolomics in cancer biomarker discovery. J Sep Sci. 2011;34:3484–92.

    Article  CAS  PubMed  Google Scholar 

  20. Li F, Gonzalez FJ, Ma X. LC–MS-based metabolomics in profiling of drug metabolism and bioactivation. Acta Pharm Sin B. 2012;2:118–25.

    Article  CAS  Google Scholar 

  21. Lin L, Huang Z, Gao Y, Yan X, Xing J, Hang W. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J Proteome Res. 2011;10:1396–405.

    Article  CAS  PubMed  Google Scholar 

  22. Merrick BA. Toxicoproteomics in liver injury and inflammation. Ann N Y Acad Sci. 2006;1076:707–17.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Hatzakis E, Patterson AD. NMR-based metabolomics and its application in drug metabolism and cancer research. Curr Pharmacol Rep. 2016;2:231–40.

    Article  CAS  Google Scholar 

  24. Bedair M, Sumner LW. Current and emerging mass-spectrometry technologies for metabolomics. Trends Anal Chem. 2008;27:238–50.

    Article  CAS  Google Scholar 

  25. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. Trends Anal Chem. 2005;24:285–94.

    Article  CAS  Google Scholar 

  27. Kim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol. 2011;29:267–75.

    Article  CAS  PubMed  Google Scholar 

  28. Reo NV. NMR-based metabolomics. Drug Chem Toxicol. 2002;25:375–82.

    Article  CAS  PubMed  Google Scholar 

  29. Wishart DS. Quantitative metabolomics using NMR. TrAC Trends Anal Chem. 2008;27:228–37.

    Article  CAS  Google Scholar 

  30. Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, Wang M, et al. RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. J Proteome Res. 2008;7:4982–91.

    Article  CAS  PubMed  Google Scholar 

  31. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1125:76–88.

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem. 2012;2012:282574.

    Article  CAS  PubMed  Google Scholar 

  33. Gunawan BK, Kaplowitz N. Mechanisms of drug-induced liver disease. Clin Liver Dis. 2007;11:459–75. v

    Article  PubMed  Google Scholar 

  34. Bleibel W, Kim S, D'Silva K, Lemmer ER. Drug-induced liver injury: review article. Dig Dis Sci. 2007;52:2463–71.

    Article  PubMed  Google Scholar 

  35. Xu JJ, Diaz D, O'Brien PJ. Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact. 2004;150:115–28.

    Article  CAS  PubMed  Google Scholar 

  36. Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16:3041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roth RA, Ganey PE. Intrinsic versus idiosyncratic drug-induced hepatotoxicity—two villains or one? J Pharmacol Exp Ther. 2010;332:692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katarey D, Verma S. Drug-induced liver injury. Clinical Med. 2016;16:s104–9.

    Article  Google Scholar 

  39. Tujios SR, Lee WM. Acute liver failure induced by idiosyncratic reaction to drugs: challenges in diagnosis and therapy. Liver Int. 2018;38:6–14.

    Article  PubMed  Google Scholar 

  40. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349:474–85.

    Article  CAS  PubMed  Google Scholar 

  41. Ostapowicz G, Fontana RJ, Schiodt FV, Larson A, Davern TJ, Han SH, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med. 2002;137:947–54.

    Article  PubMed  Google Scholar 

  42. Baillie TA. Metabolism and toxicity of drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol. 2008;21:129–37.

    Article  PubMed  Google Scholar 

  43. Tang W, Lu AY. Metabolic bioactivation and drug-related adverse effects: current status and future directions from a pharmaceutical research perspective. Drug Metab Rev. 2010;42:225–49.

    Article  CAS  PubMed  Google Scholar 

  44. Leung L, Kalgutkar AS, Obach RS. Metabolic activation in drug-induced liver injury. Drug Metab Rev. 2012;44:18–33.

    Article  CAS  PubMed  Google Scholar 

  45. Juran BD, Lazaridis KN. Genomics and complex liver disease: challenges and opportunities. Hepatology. 2006;44:1380–90.

    Article  CAS  PubMed  Google Scholar 

  46. Gray J, Chattopadhyay D, Beale GS, Patman GL, Miele L, King BP, et al. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease. BMC Cancer. 2009;9:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baillie TA, Rettie AE. Role of biotransformation in drug-induced toxicity: influence of intra- and inter-species differences in drug metabolism. Drug Metab Pharmacokinet. 2011;26:15–29.

    Article  CAS  PubMed  Google Scholar 

  48. Srivastava A, Maggs JL, Antoine DJ, Williams DP, Smith DA, Park BK. Role of reactive metabolites in drug-induced hepatotoxicity. Handb Exp Pharmacol 2010:165–194.

  49. Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK. Acyl glucuronides: the good, the bad and the ugly. Biopharm Drug Dispos. 2010;31:367–95.

    Article  CAS  PubMed  Google Scholar 

  50. Thurman R, Kauffman F, Baron J. Biotransformation and zonal toxicity. In: Thurman R, Kauffman F, Jungermann K, editors. Regulation of Hepatic Metabolism: Springer US; 1986. p. 321–382.

  51. Kalgutkar AS, Soglia JR. Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol. 2005;1:91–142.

    Article  CAS  PubMed  Google Scholar 

  52. Kalgutkar AS, Didiuk MT. Structural alerts, reactive metabolites, and protein covalent binding: how reliable are these attributes as predictors of drug toxicity? Chem Biodivers. 2009;6:2115–37.

    Article  CAS  PubMed  Google Scholar 

  53. Guengerich FP, MacDonald JS. Applying mechanisms of chemical toxicity to predict drug safety. Chem Res Toxicol. 2007;20:344–69.

    Article  CAS  PubMed  Google Scholar 

  54. Holt MP, Ju C. Mechanisms of drug-induced liver injury. AAPS J. 2006;8:E48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Argoti D, Liang L, Conteh A, Chen L, Bershas D, Yu CP, et al. Cyanide trapping of iminium ion reactive intermediates followed by detection and structure identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chem Res Toxicol. 2005;18:1537–44.

    Article  CAS  PubMed  Google Scholar 

  56. Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol. 2004;17:3–16.

    Article  CAS  PubMed  Google Scholar 

  57. Gan J, Harper TW, Hsueh MM, Qu Q, Humphreys WG. Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites. Chem Res Toxicol. 2005;18:896–903.

    Article  CAS  PubMed  Google Scholar 

  58. Kalgutkar AS, Dalvie DK, O'Donnell JP, Taylor TJ, Sahakian DC. On the diversity of oxidative bioactivation reactions on nitrogen-containing xenobiotics. Curr Drug Metab. 2002;3:379–424.

    Article  CAS  PubMed  Google Scholar 

  59. Dieckhaus CM, Fernandez-Metzler CL, King R, Krolikowski PH, Baillie TA. Negative ion tandem mass spectrometry for the detection of glutathione conjugates. Chem Res Toxicol. 2005;18:630–8.

    Article  CAS  PubMed  Google Scholar 

  60. Zhu M, Ma L, Zhang H, Humphreys WG. Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering. Anal Chem. 2007;79:8333–41.

    Article  CAS  PubMed  Google Scholar 

  61. Zheng J, Ma L, Xin B, Olah T, Humphreys WG, Zhu M. Screening and identification of GSH-trapped reactive metabolites using hybrid triple quadruple linear ion trap mass spectrometry. Chem Res Toxicol. 2007;20:757–66.

    Article  CAS  PubMed  Google Scholar 

  62. Li F, Wang L, Guo GL, Ma X. Metabolism-mediated drug interactions associated with ritonavir-boosted tipranavir in mice. Drug Metab Dispos. 2010;38:871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma X, Chen C, Krausz KW, Idle JR, Gonzalez FJ. A metabolomic perspective of melatonin metabolism in the mouse. Endocrinology. 2008;149:1869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li F, Lu J, Ma X. Profiling the reactive metabolites of xenobiotics using metabolomic technologies. Chem Res Toxicol. 2011;24:744–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol. 2001;31:55–138.

    Article  CAS  PubMed  Google Scholar 

  66. Han D, Hanawa N, Saberi B, Kaplowitz N. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1–7.

    Article  CAS  PubMed  Google Scholar 

  67. Liu X, Lu YF, Guan X, Zhao M, Wang J, Li F. Characterizing novel metabolic pathways of melatonin receptor agonist agomelatine using metabolomic approaches. Biochem Pharmacol. 2016;109:70–82.

    Article  CAS  PubMed  Google Scholar 

  68. Li F, Lu J, Wang L, Ma X. CYP3A-mediated generation of aldehyde and hydrazine in atazanavir metabolism. Drug Metab Dispos. 2011;39:394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li F, Lu J, Ma X. Metabolomic screening and identification of the bioactivation pathways of ritonavir. Chem Res Toxicol. 2011;24:2109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li F, Lu J, Ma X. CPY3A4-mediated alpha-hydroxyaldehyde formation in saquinavir metabolism. Drug Metab Dispos. 2014;42:213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu X, Lu Y, Guan X, Dong B, Chavan H, Wang J, et al. Metabolomics reveals the formation of aldehydes and iminium in gefitinib metabolism. Biochem Pharmacol. 2015;97:111–21.

    Article  CAS  PubMed  Google Scholar 

  72. Yao D, Shi X, Wang L, Gosnell BA, Chen C. Characterization of differential cocaine metabolism in mouse and rat through metabolomics-guided metabolite profiling. Drug Metab Dispos. 2013;41:79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li F, Pang X, Krausz KW, Jiang C, Chen C, Cook JA, et al. Stable isotope- and mass spectrometry-based metabolomics as tools in drug metabolism: a study expanding tempol pharmacology. J Proteome Res. 2013;12:1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang X-N, Lv Q-Q, Zhao Q, Li X-M, Yan D-M, Yang X-W, et al. Metabolic profiling of myrislignan by UPLC-ESI-QTOFMS-based metabolomics. RSC Adv. 2017;7:40131–40.

    Article  CAS  Google Scholar 

  75. Wang P, Shehu AI, Liu K, Lu J, Ma X. Biotransformation of Cobicistat: metabolic pathways and enzymes. Drug Metab Lett. 2016;10:111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi J, Xie C, Liu H, Krausz KW, Bewley CA, Zhang S, et al. Metabolism and bioactivation of fluorochloridone, a novel selective herbicide, in vivo and in vitro. Environ Sci Technol. 2016;50:9652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim JH, Choi WG, Lee S, Lee HS. Revisiting the metabolism and bioactivation of ketoconazole in human and mouse using liquid chromatography-mass spectrometry-based metabolomics. Int J Mol Sci 2017;18.

  78. Kim JH, Jo JH, Seo KA, Hwang H, Lee HS, Lee S. Non-targeted metabolomics-guided sildenafil metabolism study in human liver microsomes. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1072:86–93.

    Article  CAS  Google Scholar 

  79. Xie C, Gao X, Sun D, Zhang Y, Krausz KW, Qin X, et al. Metabolic profiling of the novel hypoxia-inducible factor 2alpha inhibitor PT2385 in vivo and in vitro. Drug Metab Dispos. 2018;46:336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim JH, Choi WG, Moon JY, Lee JY, Lee S, Lee HS. Metabolomics-assisted metabolite profiling of itraconazole in human liver preparations. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1083:68–74.

    Article  CAS  Google Scholar 

  81. Zhao Q, Li XM, Liu HN, Gonzalez FJ, Li F. Metabolic map of osthole and its effect on lipids. Xenobiotica. 2018;48:285–99.

    Article  CAS  PubMed  Google Scholar 

  82. •• Araujo AM, Carvalho M, Carvalho F, Bastos ML, Guedes de Pinho P. Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI). Crit Rev Toxicol. 2017;47:633–49. This review describes the current status of the application of metabolomics to the early prognosis and diagnosis of drug-induced liver injury and in the discovery of potential biomarkers of liver injury in urine.

    Article  CAS  PubMed  Google Scholar 

  83. Yew WW, Leung CC. Antituberculosis drugs and hepatotoxicity. Respirology. 2006;11:699–707.

    Article  PubMed  Google Scholar 

  84. Chowdhury A, Santra A, Bhattacharjee K, Ghatak S, Saha DR, Dhali GK. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J Hepatol. 2006;45:117–26.

    Article  CAS  PubMed  Google Scholar 

  85. Tasduq SA, Kaiser P, Sharma SC, Johri RK. Potentiation of isoniazid-induced liver toxicity by rifampicin in a combinational therapy of antitubercular drugs (rifampicin, isoniazid and pyrazinamide) in Wistar rats: a toxicity profile study. Hepatol Res. 2007;37:845–53.

    Article  CAS  PubMed  Google Scholar 

  86. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998;92:73–82.

    Article  CAS  PubMed  Google Scholar 

  87. Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest. 1998;102:1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li F, Lu J, Cheng J, Wang L, Matsubara T, Csanaky IL, et al. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy. Nat Med. 2013;19:418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gangadharam PR. Isoniazid, rifampin, and hepatotoxicity. Am Rev Respir Dis. 1986;133:963–5.

    CAS  PubMed  Google Scholar 

  90. Huang YS, Chern HD, Su WJ, Wu JC, Chang SC, Chiang CH, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology. 2003;37:924–30.

    Article  CAS  PubMed  Google Scholar 

  91. Miguet JP, Mavier P, Soussy CJ, Dhumeaux D. Induction of hepatic microsomal enzymes after brief administration of rifampicin in man. Gastroenterology. 1977;72:924–6.

    CAS  PubMed  Google Scholar 

  92. Slatter JG, Templeton IE, Castle JC, Kulkarni A, Rushmore TH, Richards K, et al. Compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica. 2006;36:938–62.

    Article  CAS  PubMed  Google Scholar 

  93. Rosenfeld JM, Vargas R Jr, Xie W, Evans RM. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol. 2003;17:1268–82.

    Article  CAS  PubMed  Google Scholar 

  94. Sarich TC, Youssefi M, Zhou T, Adams SP, Wall RA, Wright JM. Role of hydrazine in the mechanism of isoniazid hepatotoxicity in rabbits. Arch Toxicol. 1996;70:835–40.

    Article  CAS  PubMed  Google Scholar 

  95. Mitchell JR, Zimmerman HJ, Ishak KG, Thorgeirsson UP, Timbrell JA, Snodgrass WR, et al. Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. Ann Intern Med. 1976;84:181–92.

    Article  CAS  PubMed  Google Scholar 

  96. Casanova-Gonzalez MJ, Trapero-Marugan M, Jones EA, Moreno-Otero R. Liver disease and erythropoietic protoporphyria: a concise review. World J Gastroenterol. 2010;16:4526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fraser DJ, Zumsteg A, Meyer UA. Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene. J Biol Chem. 2003;278:39392–401.

    Article  CAS  PubMed  Google Scholar 

  98. Sachar M, Li F, Liu K, Wang P, Lu J, Ma X. Chronic treatment with isoniazid causes protoporphyrin IX accumulation in mouse liver. Chem Res Toxicol. 2016;29:1293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parman T, Bunin DI, Ng HH, McDunn JE, Wulff JE, Wang A, et al. Toxicogenomics and metabolomics of pentamethylchromanol (PMCol)-induced hepatotoxicity. Toxicol Sci. 2011;124:487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Go YM, Roede JR, Orr M, Liang Y, Jones DP. Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of Cd toxicity. Toxicol Sci. 2014;139:59–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Garcia-Canaveras JC, Castell JV, Donato MT, Lahoz A. A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury. Sci Rep. 2016;6:27239.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mattes W, Davis K, Fabian E, Greenhaw J, Herold M, Looser R, et al. Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma. Toxicol Lett. 2014;230:467–78.

    Article  CAS  PubMed  Google Scholar 

  103. Ramirez T, Strigun A, Verlohner A, Huener HA, Peter E, Herold M, et al. Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch Toxicol. 2018;92:893–906.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Xiaochao Ma at University of Pittsburgh for his kind suggestion and support for this research.

Funding

This work was supported by the Cancer Prevention & Research Institute of Texas (RP160805), Welch Foundation Grant (H-Q-0042) to Dr. Martin M. Matzuk, and NIH R01 (AR063686) to Zhaoyong Hu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacometabolomics and Toxicometabolomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhao, XM., Hu, Z. et al. LC–MS-Based Metabolomics in the Study of Drug-Induced Liver Injury. Curr Pharmacol Rep 5, 56–67 (2019). https://doi.org/10.1007/s40495-018-0144-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0144-3

Keywords

Navigation