Skip to main content

Advertisement

Log in

Control of CNS Functions by RNA-Binding Proteins in Neurological Diseases

  • Neurogenesis and Disease (L Cai, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes recent studies on the molecular mechanisms of RNA-binding proteins (RBPs) that control neurological functions and pathogenesis in various neurodevelopmental and neurodegenerative diseases, including autism spectrum disorders, schizophrenia, Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and spinocerebellar ataxia.

Recent Findings

RBPs are critical players that regulate every step of posttranscriptional modifications of gene expression. Recent genome-wide approaches revealed that many proteins associate with RNA, but do not contain any known RNA-binding motifs. Additionally, many causal and risk genes of neurodevelopmental and neurodegenerative diseases are RBPs. Development of high-throughput sequencing methods has mapped out the fingerprints of RBPs on transcripts and provided unprecedented potential to discover new mechanisms of neurological diseases. Insights into how RBPs modulate neural development are important for designing effective therapies for numerous neurodevelopmental and neurodegenerative diseases.

Summary

RBPs have diverse mechanisms for modulating RNA processing and, thereby, controlling neurogenesis. Understanding the role of disease-associated RBPs in neurogenesis is vital for developing novel treatments for neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. Genes Brain Behav. 2016;15(1):169–86. https://doi.org/10.1111/gbb.12273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Oswald F, Kloble P, Ruland A, Rosenkranz D, Hinz B, Butter F, et al. The FOXP2-driven network in developmental disorders and neurodegeneration. Front Cell Neurosci. 2017;11:212. https://doi.org/10.3389/fncel.2017.00212.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maziuk B, Ballance HI, Wolozin B. Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front Mol Neurosci. 2017;10:89. https://doi.org/10.3389/fnmol.2017.00089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Barker HV, Niblock M, Lee YB, Shaw CE, Gallo JM. RNA misprocessing in C9orf72-linked neurodegeneration. Front Cell Neurosci. 2017;11:195. https://doi.org/10.3389/fncel.2017.00195.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alkallas R, Fish L, Goodarzi H, Najafabadi HS. Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer’s disease. Nat Commun. 2017;8(1):909. https://doi.org/10.1038/s41467-017-00867-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Khermesh K, D'Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY, et al. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA. 2016;22(2):290–302. https://doi.org/10.1261/rna.054627.115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Brunello CA, Yan X, Huttunen HJ, Scheckel C, Drapeau E, Frias MA, et al. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules. Sci Rep. 2016;6:30498. https://doi.org/10.1038/srep30498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Scheckel C, Drapeau E, Frias MA, Park CY, Fak J, Zucker-Scharff I, et al. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. elife. 2016;5:e10421. https://doi.org/10.7554/eLife.10421.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peretti D, Bastide A, Radford H, Verity N, Molloy C, Martin MG, et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature. 2015;518(7538):236–9. https://doi.org/10.1038/nature14142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K, Fernandez Gomez FJ, et al. MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep. 2015;12(7):1159–68. https://doi.org/10.1016/j.celrep.2015.07.029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Davis JK, Broadie K. Multifarious functions of the fragile X mental retardation protein. Trends Genet. 2017;33(10):703–14. https://doi.org/10.1016/j.tig.2017.07.008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Gantois I, Khoutorsky A, Popic J, Aguilar-Valles A, Freemantle E, Cao R, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med. 2017;23(6):674–7. https://doi.org/10.1038/nm.4335.

    Article  PubMed  CAS  Google Scholar 

  13. Donlin-Asp PG, Rossoll W, Bassell GJ. Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett. 2017;591(11):1508–25. https://doi.org/10.1002/1873-3468.12621.

    Article  PubMed  CAS  Google Scholar 

  14. El Fatimy R, Davidovic L, Tremblay S, Jaglin X, Dury A, Robert C, et al. Tracking the fragile X mental retardation protein in a highly ordered neuronal ribonucleoparticles population: a link between stalled polyribosomes and RNA granules. PLoS Genet. 2016;12(7):e1006192. https://doi.org/10.1371/journal.pgen.1006192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16(10):595–605. https://doi.org/10.1038/nrn4001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24(10):870–8. https://doi.org/10.1038/nsmb.3462.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hinney A, Albayrak Ö, Antel J, Volckmar A-L, Sims R, Chapman J, et al. Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am J Med Genet B Neuropsychiatr Genet. 2014;165(4):283–93. https://doi.org/10.1002/ajmg.b.32234.

    Article  CAS  Google Scholar 

  18. Berto S, Usui N, Konopka G, Fogel BL. ELAVL2-regulated transcriptional and splicing networks in human neurons link neurodevelopment and autism. Hum Mol Genet. 2016;25(12):2451–64. https://doi.org/10.1093/hmg/ddw110.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Barone R, Fichera M, De Grandi M, Battaglia M, Lo Faro V, Mattina T, et al. Familial 18q12.2 deletion supports the role of RNA-binding protein CELF4 in autism spectrum disorders. Am J Med Genet A. 2017;173(6):1649–55. https://doi.org/10.1002/ajmg.a.38205.

    Article  PubMed  CAS  Google Scholar 

  20. Wagnon JL, Mahaffey CL, Sun W, Yang Y, Chao HT, Frankel WN. Etiology of a genetically complex seizure disorder in Celf4 mutant mice. Genes Brain Behav. 2011;10(7):765–77. https://doi.org/10.1111/j.1601-183X.2011.00717.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wagnon JL, Briese M, Sun W, Mahaffey CL, Curk T, Rot G, et al. CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet. 2012;8(11):e1003067. https://doi.org/10.1371/journal.pgen.1003067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Conboy JG. Developmental regulation of RNA processing by Rbfox proteins. Wiley interdisciplinary reviews. RNA. 2017;8(2):e1398. https://doi.org/10.1002/wrna.1398.

    Article  CAS  Google Scholar 

  23. Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, et al. Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron. 2016;89(1):113–28. https://doi.org/10.1016/j.neuron.2015.11.025.

    Article  PubMed  CAS  Google Scholar 

  24. Lal D, Pernhorst K, Klein KM, Reif P, Tozzi R, Toliat MR, et al. Extending the phenotypic spectrum of RBFOX1 deletions: sporadic focal epilepsy. Epilepsia. 2015;56(9):e129–33. https://doi.org/10.1111/epi.13076.

    Article  PubMed  CAS  Google Scholar 

  25. Hamada N, Ito H, Nishijo T, Iwamoto I, Morishita R, Tabata H, et al. Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep. 2016;6:30805. https://doi.org/10.1038/srep30805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Weyn-Vanhentenryck SM, Mele A, Yan Q, Sun S, Farny N, Zhang Z, et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 2014;6(6):1139–52. https://doi.org/10.1016/j.celrep.2014.02.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347(6218):1254806. https://doi.org/10.1126/science.1254806.

    Article  PubMed  CAS  Google Scholar 

  28. Bono F, Ebert J, Lorentzen E, Conti E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell. 2006;126(4):713–25. https://doi.org/10.1016/j.cell.2006.08.006.

    Article  PubMed  CAS  Google Scholar 

  29. Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science. 2006;313(5795):1968–72. https://doi.org/10.1126/science.1131981.

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen LS, Kim HG, Rosenfeld JA, Shen Y, Gusella JF, Lacassie Y, et al. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet. 2013;22(9):1816–25. https://doi.org/10.1093/hmg/ddt035.

    Article  PubMed  CAS  Google Scholar 

  31. Zou D, McSweeney C, Sebastian A, Reynolds DJ, Dong F, Zhou Y, et al. A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Dev. 2015;10:18. https://doi.org/10.1186/s13064-015-0045-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mao H, McMahon JJ, Tsai YH, Wang Z, Silver DL. Haploinsufficiency for Core exon junction complex components disrupts embryonic neurogenesis and causes p53-mediated microcephaly. PLoS Genet. 2016;12(9):e1006282. https://doi.org/10.1371/journal.pgen.1006282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mao H, Pilaz LJ, McMahon JJ, Golzio C, Wu D, Shi L, et al. Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J Neurosci Off J Soc Neurosci. 2015;35(18):7003–18. https://doi.org/10.1523/JNEUROSCI.0018-15.2015.

    Article  CAS  Google Scholar 

  34. Silver DL, Watkins-Chow DE, Schreck KC, Pierfelice TJ, Larson DM, Burnetti AJ, et al. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat Neurosci. 2010;13(5):551–8. https://doi.org/10.1038/nn.2527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Alachkar A, Jiang D, Harrison M, Zhou Y, Chen G, Mao Y. An EJC factor RBM8a regulates anxiety behaviors. Curr Mol Med. 2013;13(6):887–99.

    Article  PubMed  CAS  Google Scholar 

  36. He F, Jacobson A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu Rev Genet. 2015;49:339–66. https://doi.org/10.1146/annurev-genet-112414-054639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jolly LA, Homan CC, Jacob R, Barry S, Gecz J. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet. 2013;22(23):4673–87. https://doi.org/10.1093/hmg/ddt315.

    Article  PubMed  CAS  Google Scholar 

  38. Tarpey PS, Raymond FL, Nguyen LS, Rodriguez J, Hackett A, Vandeleur L, et al. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet. 2007;39(9):1127–33. https://doi.org/10.1038/ng2100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Addington AM, Gauthier J, Piton A, Hamdan FF, Raymond A, Gogtay N, et al. A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol Psychiatry. 2011;16(3):238–9. https://doi.org/10.1038/mp.2010.59.

    Article  PubMed  CAS  Google Scholar 

  40. Laumonnier F, Shoubridge C, Antar C, Nguyen LS, Van Esch H, Kleefstra T, et al. Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry. 2010;15(7):767–76. https://doi.org/10.1038/mp.2009.14.

    Article  PubMed  CAS  Google Scholar 

  41. Huang L, Shum EY, Jones SH, Lou CH, Dumdie J, Kim H, et al. A Upf3b-mutant mouse model with behavioral and neurogenesis defects. Mol Psychiatry. 2017; https://doi.org/10.1038/mp.2017.173.

  42. Shum EY, Jones SH, Shao A, Dumdie J, Krause MD, Chan WK, et al. The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell. 2016;165(2):382–95. https://doi.org/10.1016/j.cell.2016.02.046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Graber TE, Freemantle E, Anadolu MN, Hebert-Seropian S, MacAdam RL, Shin U, et al. UPF1 governs synaptic plasticity through association with a STAU2 RNA granule. J Neurosci Off J Soc Neurosci. 2017;37(38):9116–31. https://doi.org/10.1523/JNEUROSCI.0088-17.2017.

    Article  CAS  Google Scholar 

  44. Mellios N, Feldman DA, Sheridan SD, Ip JPK, Kwok S, Amoah SK, et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 2017;23:1051–65. https://doi.org/10.1038/mp.2017.86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sztainberg Y, Chen HM, Swann JW, Hao S, Tang B, Wu Z, et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature. 2015;528(7580):123–6. https://doi.org/10.1038/nature16159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Khan AW, Ziemann M, Rafehi H, Maxwell S, Ciccotosto GD, El-Osta A. MeCP2 interacts with chromosomal microRNAs in brain. Epigenetics. 2017;12(12):1028–37. https://doi.org/10.1080/15592294.2017.1391429.

    Article  PubMed  Google Scholar 

  47. Jeffery L, Nakielny S. Components of the DNA methylation system of chromatin control are RNA-binding proteins. J Biol Chem. 2004;279(47):49479–87. https://doi.org/10.1074/jbc.M409070200.

    Article  PubMed  CAS  Google Scholar 

  48. Jobe EM, Gao Y, Eisinger BE, Mladucky JK, Giuliani CC, Kelnhofer LE, et al. Methyl-CpG-binding protein MBD1 regulates neuronal lineage commitment through maintaining adult neural stem cell identity. J Neurosci. 2017;37(3):523–36. https://doi.org/10.1523/jneurosci.1075-16.2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu C, Teng Z-Q, Santistevan NJ, Szulwach KE, Guo W, Jin P, et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010;6(5):433–44. https://doi.org/10.1016/j.stem.2010.02.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Li H, Zhong X, Chau KF, Santistevan NJ, Guo W, Kong G, et al. Cell cycle-linked MeCP2 phosphorylation modulates adult neurogenesis involving the notch signalling pathway. Nat Commun. 2014;5:5601. https://doi.org/10.1038/ncomms6601. https://www.nature.com/articles/ncomms6601#supplementary-information

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135(8):851–67. https://doi.org/10.1007/s00439-016-1683-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bain JM, Cho MT, Telegrafi A, Wilson A, Brooks S, Botti C, et al. Variants in HNRNPH2 on the X chromosome are associated with a neurodevelopmental disorder in females. Am J Hum Genet. 2016;99(3):728–34. https://doi.org/10.1016/j.ajhg.2016.06.028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Du X, An Y, Yu L, Liu R, Qin Y, Guo X, et al. A genomic copy number variant analysis implicates the MBD5 and HNRNPU genes in Chinese children with infantile spasms and expands the clinical spectrum of 2q23.1 deletion. BMC Med Genet. 2014;15:62. https://doi.org/10.1186/1471-2350-15-62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Poot M, Kas MJ. Antisense may make sense of 1q44 deletions, seizures, and HNRNPU. Am J Med Genet A. 2013;161A(4):910–2. https://doi.org/10.1002/ajmg.a.35770.

    Article  PubMed  CAS  Google Scholar 

  55. Vidaki M, Drees F, Saxena T, Lanslots E, Taliaferro MJ, Tatarakis A, et al. A requirement for Mena, an actin regulator, in local mRNA translation in developing neurons. Neuron. 2017;95(3):608–22 e5. https://doi.org/10.1016/j.neuron.2017.06.048.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Vidal RL, Valenzuela JI, Lujan R, Couve A. Cellular and subcellular localization of Marlin-1 in the brain. BMC Neurosci. 2009;10:37. https://doi.org/10.1186/1471-2202-10-37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M, et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet. 2007;16(14):1682–98. https://doi.org/10.1093/hmg/ddm116.

    Article  PubMed  CAS  Google Scholar 

  58. Berg JM, Lee C, Chen L, Galvan L, Cepeda C, Chen JY, et al. JAKMIP1, a novel regulator of neuronal translation, modulates synaptic function and autistic-like behaviors in mouse. Neuron. 2015;88(6):1173–91. https://doi.org/10.1016/j.neuron.2015.10.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Neves-Pereira M, Muller B, Massie D, Williams JH, O'Brien PC, Hughes A, et al. Deregulation of EIF4E: a novel mechanism for autism. J Med Genet. 2009;46(11):759–65. https://doi.org/10.1136/jmg.2009.066852.

    Article  PubMed  CAS  Google Scholar 

  60. Millar JK, Christie S, Semple CA, Porteous DJ. Chromosomal location and genomic structure of the human translin-associated factor X gene (TRAX; TSNAX) revealed by intergenic splicing to DISC1, a gene disrupted by a translocation segregating with schizophrenia. Genomics. 2000;67(1):69–77.

    Article  PubMed  CAS  Google Scholar 

  61. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001;69(2):428–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yates D. Psychiatric disorders: multiple pathways to DISC1-related disease? Nat Rev Neurosci. 2011;13(1):4–5. https://doi.org/10.1038/nrn3166.

    Article  PubMed  CAS  Google Scholar 

  63. Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci. 2011;12(12):707–22. https://doi.org/10.1038/nrn3120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell. 2009;136(6):1017–31. https://doi.org/10.1016/j.cell.2008.12.044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Singh KK, Ge X, Mao Y, Drane L, Meletis K, Samuels BA, et al. Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron. 2010;67(1):33–48. https://doi.org/10.1016/j.neuron.2010.06.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ishizuka K, Kamiya A, Oh EC, Kanki H, Seshadri S, Robinson JF, et al. DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature. 2011;473(7345):92–6. https://doi.org/10.1038/nature09859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Srikanth P, Han K, Callahan DG, Makovkina E, Muratore CR, Lalli MA, et al. Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Rep. 2015;12(9):1414–29. https://doi.org/10.1016/j.celrep.2015.07.061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. De Rienzo G, Bishop JA, Mao Y, Pan L, Ma TP, Moens CB, et al. Disc1 regulates both beta-catenin-mediated and noncanonical Wnt signaling during vertebrate embryogenesis. FASEB J. 2011;25(12):4184–97. https://doi.org/10.1096/fj.11-186239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tsuboi D, Kuroda K, Tanaka M, Namba T, Iizuka Y, Taya S, et al. Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nat Neurosci. 2015;18(5):698–707. https://doi.org/10.1038/nn.3984.

    Article  PubMed  CAS  Google Scholar 

  70. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008;40(9):1053–5. https://doi.org/10.1038/ng.201.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang R, Lu SM, Qiu C, Liu XG, Gao CG, Guo TW, et al. Population-based and family-based association studies of ZNF804A locus and schizophrenia. Mol Psychiatry. 2011;16(4):360–1.

    Article  PubMed  CAS  Google Scholar 

  72. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011;16(4):429–41. https://doi.org/10.1038/mp.2010.36.

    Article  PubMed  CAS  Google Scholar 

  73. Steinberg S, Mors O, Borglum AD, Gustafsson O, Werge T, Mortensen PB, et al. Expanding the range of ZNF804A variants conferring risk of psychosis. Mol Psychiatry. 2011;16(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  74. Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO, et al. Replication of association between schizophrenia and ZNF804A in the Irish Case-Control Study of Schizophrenia sample. Mol Psychiatry. 2010;15(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  75. Schwab SG, Kusumawardhani A, Dai N, Qin W, Wildenauer MDB, Agiananda F, et al. Association of rs1344706 in the ZNF804A gene with schizophrenia in a case/control sample from Indonesia. Schizophr Res. 2013;147(1):46–52. https://doi.org/10.1016/j.schres.2013.03.022.

    Article  PubMed  Google Scholar 

  76. Xiao X, Luo XJ, Chang H, Liu Z, Li M. Evaluation of European schizophrenia GWAS loci in Asian populations via comprehensive meta-analyses. Mol Neurobiol. 2017;54(6):4071–80. https://doi.org/10.1007/s12035-016-9990-3.

    Article  PubMed  CAS  Google Scholar 

  77. Huang L, Ohi K, Chang H, Yu H, Wu L, Yue W, et al. A comprehensive meta-analysis of ZNF804A SNPs in the risk of schizophrenia among Asian populations. Am J Med Genet B Neuropsychiatr Genet. 2016;171b(3):437–46. https://doi.org/10.1002/ajmg.b.32425.

    Article  PubMed  CAS  Google Scholar 

  78. Consortium SWGotPG. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. https://doi.org/10.1038/nature13595.

    Article  CAS  Google Scholar 

  79. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45(10):1150–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Griswold AJ, Ma D, Cukier HN, Nations LD, Schmidt MA, Chung RH, et al. Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways. Hum Mol Genet. 2012;21(15):3513–23. https://doi.org/10.1093/hmg/dds164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Anitha A, Thanseem I, Nakamura K, Vasu MM, Yamada K, Ueki T, et al. Zinc finger protein 804A (ZNF804A) and verbal deficits in individuals with autism. J Psychiatry Neurosci. 2014;39(5):294–303.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149(3):525–37. https://doi.org/10.1016/j.cell.2012.03.028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Blake J, Riddell A, Theiss S, Gonzalez AP, Haase B, Jauch A, et al. Sequencing of a patient with balanced chromosome abnormalities and neurodevelopmental disease identifies disruption of multiple high risk loci by structural variation. PLoS One. 2014;9(3):e90894. https://doi.org/10.1371/journal.pone.0090894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Guella I, Sequeira A, Rollins B, Morgan L, Myers RM, Watson SJ, et al. Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophr Res. 2014;152(1):111–6. https://doi.org/10.1016/j.schres.2013.11.021.

    Article  PubMed  Google Scholar 

  85. Wei Q, Kang Z, Diao F, Shan B, Li L, Zheng L, et al. Association of the ZNF804A gene polymorphism rs1344706 with white matter density changes in Chinese schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;36(1):122–7. https://doi.org/10.1016/j.pnpbp.2011.08.021.

    Article  CAS  Google Scholar 

  86. Wassink TH, Epping EA, Rudd D, Axelsen M, Ziebell S, Fleming FW, et al. Influence of ZNF804a on brain structure volumes and symptom severity in individuals with schizophrenia. Arch Gen Psychiatry. 2012;69(9):885–92.

    Article  PubMed  CAS  Google Scholar 

  87. Rasetti R, Sambataro F, Chen Q, Callicott JH, Mattay VS, Weinberger DR. Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry. 2011;68(12):1207–17. https://doi.org/10.1001/archgenpsychiatry.2011.103.

    Article  PubMed  Google Scholar 

  88. Paulus FM, Krach S, Bedenbender J, Pyka M, Sommer J, Krug A, et al. Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Hum Brain Mapp. 2013;34(2):304–13. https://doi.org/10.1002/hbm.21434.

    Article  PubMed  Google Scholar 

  89. Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science. 2009;324(5927):605.

    Article  PubMed  CAS  Google Scholar 

  90. Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S, et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. NeuroImage. 2011;54(3):2514–23. https://doi.org/10.1016/j.neuroimage.2010.10.012.

    Article  PubMed  Google Scholar 

  91. Del Re EC, Bergen SE, Mesholam-Gately RI, Niznikiewicz MA, Goldstein JM, Woo TU, et al. Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A association with amplitude of P300b elicited by novel sounds. Transl Psychiatry. 2013;4:e346. https://doi.org/10.1038/tp.2013.117.

    Article  CAS  Google Scholar 

  92. Hashimoto R, Ohi K, Yasuda Y, Fukumoto M, Iwase M, Iike N, et al. The impact of a genome-wide supported psychosis variant in the ZNF804A gene on memory function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2010;153b(8):1459–64. https://doi.org/10.1002/ajmg.b.31123.

    Article  PubMed  Google Scholar 

  93. Walters JT, Corvin A, Owen MJ, Williams H, Dragovic M, Quinn EM, et al. Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Arch Gen Psychiatry. 2010;67(7):692–700. https://doi.org/10.1001/archgenpsychiatry.2010.81.

    Article  PubMed  CAS  Google Scholar 

  94. Balog Z, Kiss I, Keri S. ZNF804A may be associated with executive control of attention. Genes Brain Behav. 2011;10(2):223–7. https://doi.org/10.1111/j.1601-183X.2010.00657.x.

    Article  PubMed  CAS  Google Scholar 

  95. Donohoe G, Rose E, Frodl T, Morris D, Spoletini I, Adriano F, et al. ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. NeuroImage. 2011;54(3):2132–7. https://doi.org/10.1016/j.neuroimage.2010.09.089.

    Article  PubMed  CAS  Google Scholar 

  96. Chen M, Xu Z, Zhai J, Bao X, Zhang Q, Gu H, et al. Evidence of IQ-modulated association between ZNF804A gene polymorphism and cognitive function in schizophrenia patients. Neuropsychopharmacology. 2012;37(7):1572–8. https://doi.org/10.1038/npp.2012.1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kuswanto CN, Woon PS, Zheng XB, Qiu A, Sitoh YY, Chan YH, et al. Genome-wide supported psychosis risk variant in ZNF804A gene and impact on cortico-limbic WM integrity in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2012;159b(3):255–62. https://doi.org/10.1002/ajmg.b.32032.

    Article  PubMed  CAS  Google Scholar 

  98. Mossner R, Schuhmacher A, Wagner M, Lennertz L, Steinbrecher A, Quednow BB, et al. The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. Eur Arch Psychiatry Clin Neurosci. 2012;262(3):193–7. https://doi.org/10.1007/s00406-011-0235-1.

    Article  PubMed  Google Scholar 

  99. Sprooten E, McIntosh AM, Lawrie SM, Hall J, Sussmann JE, Dahmen N, et al. An investigation of a genomewide supported psychosis variant in ZNF804A and white matter integrity in the human brain. Magn Reson Imaging. 2012;30(10):1373–80. https://doi.org/10.1016/j.mri.2012.05.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Del Re EC, Bergen SE, Mesholam-Gately RI, Niznikiewicz MA, Goldstein JM, Woo TU, et al. Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A association with amplitude of P300b elicited by novel sounds. Transl Psychiatry. 2014;4:e346. https://doi.org/10.1038/tp.2013.117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ikuta T, Peters BD, Guha S, John M, Karlsgodt KH, Lencz T, et al. A schizophrenia risk gene, ZNF804A, is associated with brain white matter microstructure. Schizophr Res. 2014;155(1–3):15–20. https://doi.org/10.1016/j.schres.2014.03.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mohnke S, Erk S, Schnell K, Schutz C, Romanczuk-Seiferth N, Grimm O, et al. Further evidence for the impact of a genome-wide-supported psychosis risk variant in ZNF804A on the theory of mind network. Neuropsychopharmacology. 2014;39(5):1196–205. https://doi.org/10.1038/npp.2013.321.

    Article  PubMed  CAS  Google Scholar 

  103. Nicodemus KK, Hargreaves A, Morris D, Anney R, Gill M, Corvin A, et al. Variability in working memory performance explained by epistasis vs polygenic scores in the ZNF804A pathway. JAMA Psychiatry. 2014;71(7):778–85. https://doi.org/10.1001/jamapsychiatry.2014.528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cousijn H, Tunbridge EM, Rolinski M, Wallis G, Colclough GL, Woolrich MW, et al. Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene. Hum Brain Mapp. 2015;36(6):2387–95. https://doi.org/10.1002/hbm.22778.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wickramasinghe A, Tulloch AD, Hayes RD, Chang CK, Broadbent M, Di Forti M, et al. Associations between the schizophrenia susceptibility gene ZNF804A and clinical outcomes in psychosis. Transl Psychiatry. 2015;5:e698. https://doi.org/10.1038/tp.2015.198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mallas EJ, Carletti F, Chaddock CA, Woolley J, Picchioni MM, Shergill SS, et al. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder. PeerJ. 2016;4:e1570. https://doi.org/10.7717/peerj.1570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, et al. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder(1). Genes Brain Behav. 2017;16(4):479–88. https://doi.org/10.1111/gbb.12355.

    Article  PubMed  CAS  Google Scholar 

  108. Squarcina L, Houenou J, Altamura AC, Soares J, Brambilla P. Association of increased genotypes risk for bipolar disorder with brain white matter integrity investigated with tract-based spatial statistics: special section on “Translational and Neuroscience Studies in Affective Disorders”. Section editor, Maria Nobile MD, PhD. This section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summarise relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders. J Affect Disord. 2017;221:312–7. https://doi.org/10.1016/j.jad.2017.06.031.

    Article  PubMed  CAS  Google Scholar 

  109. Tecelao D, Mendes A, Martins D, Bramon E, Toulopoulou T, Kravariti E, et al. The impact of psychosis genome-wide associated ZNF804A variation on verbal fluency connectivity. J Psychiatr Res. 2017;98:17–21. https://doi.org/10.1016/j.jpsychires.2017.12.005.

    Article  PubMed  Google Scholar 

  110. Xu Q, Xiong Y, Yuan C, Liu F, Zhao F, Shen J, et al. ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav. 2017;12:13–9. https://doi.org/10.1007/s11682-016-9671-x.

    Article  Google Scholar 

  111. Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One. 2012;7(2):e32404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zhou Y, Dong F, Lanz TA, Reinhart V, Li M, Liu L, et al. Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Mol Psychiatry. 2017;23:952–62. https://doi.org/10.1038/mp.2017.166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Deans PJM, Raval P, Sellers KJ, Gatford NJF, Halai S, Duarte RRR, et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry. 2017;82(1):49–61. https://doi.org/10.1016/j.biopsych.2016.08.038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Darbelli L, Richard S. Emerging functions of the quaking RNA-binding proteins and link to human diseases. Wiley interdisciplinary reviews. RNA. 2016;7(3):399–412. https://doi.org/10.1002/wrna.1344.

    Article  PubMed  CAS  Google Scholar 

  115. Iwata K, Matsuzaki H, Manabe T, Mori N. Altering the expression balance of hnRNP C1 and C2 changes the expression of myelination-related genes. Psychiatry Res. 2011;190(2–3):364–6. https://doi.org/10.1016/j.psychres.2011.05.043.

    Article  PubMed  CAS  Google Scholar 

  116. Radomska KJ, Halvardson J, Reinius B, Lindholm Carlstrom E, Emilsson L, Feuk L, et al. RNA-binding protein QKI regulates glial fibrillary acidic protein expression in human astrocytes. Hum Mol Genet. 2013;22(7):1373–82. https://doi.org/10.1093/hmg/dds553.

    Article  PubMed  CAS  Google Scholar 

  117. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84. https://doi.org/10.1038/nature12929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Del'Guidice T, Latapy C, Rampino A, Khlghatyan J, Lemasson M, Gelao B, et al. FXR1P is a GSK3beta substrate regulating mood and emotion processing. Proc Natl Acad Sci U S A. 2015;112(33):E4610–9. https://doi.org/10.1073/pnas.1506491112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ferrari R, Kapogiannis D, Huey ED, Momeni P. FTD and ALS: a tale of two diseases. Curr Alzheimer Res. 2011;8(3):273–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Weishaupt JH, Hyman T, Dikic I. Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol Med. 2016;22(9):769–83. https://doi.org/10.1016/j.molmed.2016.07.005.

    Article  PubMed  CAS  Google Scholar 

  121. Heraud-Farlow JE, Kiebler MA. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity. Trends Neurosci. 2014;37(9):470–9. https://doi.org/10.1016/j.tins.2014.05.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Gershoni-Emek N, Mazza A, Chein M, Gradus-Pery T, Xiang X, Li KW, et al. Proteomic analysis of dynein-interacting proteins in amyotrophic lateral sclerosis synaptosomes reveals alterations in the RNA-binding protein Staufen1. Mol Cell Proteomics. 2016;15(2):506–22. https://doi.org/10.1074/mcp.M115.049965.

    Article  PubMed  CAS  Google Scholar 

  123. Kwiatkowski TJ, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the <em>FUS/TLS</em> gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8. https://doi.org/10.1126/science.1166066.

    Article  PubMed  CAS  Google Scholar 

  124. Lee EB, Lee VM, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2011;13(1):38–50. https://doi.org/10.1038/nrn3121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem. 2008;283(19):13302–9. https://doi.org/10.1074/jbc.M800342200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Ayala YM, Zago P, D'Ambrogio A, Xu YF, Petrucelli L, Buratti E, et al. Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci. 2008;121(Pt 22):3778–85. https://doi.org/10.1242/jcs.038950.

    Article  PubMed  CAS  Google Scholar 

  127. Afroz T, Hock EM, Ernst P, Foglieni C, Jambeau M, Gilhespy LAB, et al. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun. 2017;8(1):45. https://doi.org/10.1038/s41467-017-00062-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 2014;5:3996. https://doi.org/10.1038/ncomms4996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SSW, et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron. 2014;81(3):536–43. https://doi.org/10.1016/j.neuron.2013.12.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Rogelj B, Easton LE, Bogu GK, Stanton LW, Rot G, Curk T, et al. Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci Rep. 2012;2:603. https://doi.org/10.1038/srep00603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Honda D, Ishigaki S, Iguchi Y, Fujioka Y, Udagawa T, Masuda A, et al. The ALS/FTLD-related RNA-binding proteins TDP-43 and FUS have common downstream RNA targets in cortical neurons. FEBS Open Bio. 2013;4:1–10. https://doi.org/10.1016/j.fob.2013.11.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Schwartz JC, Podell ER, Han SS, Berry JD, Eggan KC, Cech TR. FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Mol Biol Cell. 2014;25(17):2571–8. https://doi.org/10.1091/mbc.E14-05-1007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162(5):1066–77. https://doi.org/10.1016/j.cell.2015.07.047.

    Article  PubMed  CAS  Google Scholar 

  134. Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron. 2015;88(4):678–90. https://doi.org/10.1016/j.neuron.2015.10.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import. EMBO J. 2010;29(16):2841–57. https://doi.org/10.1038/emboj.2010.143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Shiihashi G, Ito D, Yagi T, Nihei Y, Ebine T, Suzuki N. Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain. 2016;139(Pt 9):2380–94. https://doi.org/10.1093/brain/aww161.

    Article  PubMed  Google Scholar 

  137. Takanashi K, Yamaguchi A. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation. Biochem Biophys Res Commun. 2014;452(3):600–7. https://doi.org/10.1016/j.bbrc.2014.08.115.

    Article  PubMed  CAS  Google Scholar 

  138. Sun S, Ling SC, Qiu J, Albuquerque CP, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171. https://doi.org/10.1038/ncomms7171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Qiu H, Lee S, Shang Y, Wang WY, Au KF, Kamiya S, et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest. 2014;124(3):981–99. https://doi.org/10.1172/JCI72723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Yasuda K, Zhang H, Loiselle D, Haystead T, Macara IG, Mili S. The RNA-binding protein Fus directs translation of localized mRNAs in APC-RNP granules. J Cell Biol. 2013;203(5):737–46. https://doi.org/10.1083/jcb.201306058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Gonatas NK, Stieber A, Mourelatos Z, Chen Y, Gonatas JO, Appel SH, et al. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Am J Pathol. 1992;140(3):731–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Mourelatos Z, Adler H, Hirano A, Donnenfeld H, Gonatas JO, Gonatas NK. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis revealed by organelle-specific antibodies. Proc Natl Acad Sci U S A. 1990;87(11):4393–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Farg MA, Soo KY, Warraich ST, Sundaramoorthy V, Blair IP, Atkin JD. Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22(4):717–28. https://doi.org/10.1093/hmg/dds479.

    Article  PubMed  CAS  Google Scholar 

  144. Suarez-Calvet M, Neumann M, Arzberger T, Abou-Ajram C, Funk E, Hartmann H, et al. Monomethylated and unmethylated FUS exhibit increased binding to transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol. 2016;131(4):587–604. https://doi.org/10.1007/s00401-016-1544-2.

    Article  PubMed  CAS  Google Scholar 

  145. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–28. https://doi.org/10.1016/j.neuron.2013.10.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Lee YB, Chen HJ, Peres JN, Gomez-Deza J, Attig J, Stalekar M, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013;5(5):1178–86. https://doi.org/10.1016/j.celrep.2013.10.049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Walker C, Herranz-Martin S, Karyka E, Liao C, Lewis K, Elsayed W, et al. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci. 2017;20(9):1225–35. https://doi.org/10.1038/nn.4604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Jovicic A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci. 2015;18(9):1226–9. https://doi.org/10.1038/nn.4085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hautbergue GM, Castelli LM, Ferraiuolo L, Sanchez-Martinez A, Cooper-Knock J, Higginbottom A, et al. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun. 2017;8:16063. https://doi.org/10.1038/ncomms16063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Kaneb HM, Folkmann AW, Belzil VV, Jao LE, Leblond CS, Girard SL, et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum Mol Genet. 2015;24(5):1363–73. https://doi.org/10.1093/hmg/ddu545.

    Article  PubMed  CAS  Google Scholar 

  151. Kendirgi F, Barry DM, Griffis ER, Powers MA, Wente SR. An essential role for hGle1 nucleocytoplasmic shuttling in mRNA export. J Cell Biol. 2003;160(7):1029–40. https://doi.org/10.1083/jcb.200211081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Aditi, Folkmann AW, Wente SR. Cytoplasmic hGle1A regulates stress granules by modulation of translation. Mol Biol Cell. 2015;26(8):1476–90. https://doi.org/10.1091/mbc.E14-11-1523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Kendirgi F, Rexer DJ, Alcazar-Roman AR, Onishko HM, Wente SR. Interaction between the shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a conserved mechanism in the export of Hsp70 mRNA. Mol Biol Cell. 2005;16(9):4304–15. https://doi.org/10.1091/mbc.E04-11-0998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Nousiainen HO, Kestila M, Pakkasjarvi N, Honkala H, Kuure S, Tallila J, et al. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat Genet. 2008;40(2):155–7. https://doi.org/10.1038/ng.2007.65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Folkmann AW, Collier SE, Zhan X, Aditi, Ohi MD, Wente SR. Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell. 2013;155(3):582–93. https://doi.org/10.1016/j.cell.2013.09.023.

    Article  PubMed  CAS  Google Scholar 

  156. Seytanoglu A, Alsomali NI, Valori CF, McGown A, Kim HR, Ning K, et al. Deficiency in the mRNA export mediator Gle1 impairs Schwann cell development in the zebrafish embryo. Neuroscience. 2016;322:287–97. https://doi.org/10.1016/j.neuroscience.2016.02.039.

    Article  PubMed  CAS  Google Scholar 

  157. Aditi GL, Dawson TR, Wente SR. An amyotrophic lateral sclerosis-linked mutation in GLE1 alters the cellular pool of human Gle1 functional isoforms. Adv Biol Regul. 2016;62:25–36. https://doi.org/10.1016/j.jbior.2015.11.001.

    Article  PubMed  CAS  Google Scholar 

  158. Orr HT. Cell biology of spinocerebellar ataxia. J Cell Biol. 2012;197(2):167–77. https://doi.org/10.1083/jcb.201105092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6. https://doi.org/10.1038/ng0793-221.

    Article  PubMed  CAS  Google Scholar 

  160. Yue S, Serra HG, Zoghbi HY, Orr HT. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet. 2001;10(1):25–30.

    Article  PubMed  CAS  Google Scholar 

  161. Asher M, Johnson A, Zecevic B, Pease D, Cvetanovic M. Ataxin-1 regulates proliferation of hippocampal neural precursors. Neuroscience. 2016;322:54–65. https://doi.org/10.1016/j.neuroscience.2016.02.011.

    Article  PubMed  CAS  Google Scholar 

  162. Cvetanovic M, Hu YS, Opal P. Mutant ataxin-1 inhibits neural progenitor cell proliferation in SCA1. Cerebellum. 2017;16(2):340–7. https://doi.org/10.1007/s12311-016-0794-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sanchez I, Balague E, Matilla-Duenas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3beta-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). Hum Mol Genet. 2016;25(18):4021–40. https://doi.org/10.1093/hmg/ddw242.

    Article  PubMed  CAS  Google Scholar 

  164. Park J, Al-Ramahi I, Tan Q, Mollema N, Diaz-Garcia JR, Gallego-Flores T, et al. RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature. 2013;498(7454):325–31. https://doi.org/10.1038/nature12204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Gennarino VA, Singh RK, White JJ, De Maio A, Han K, Kim JY, et al. Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type ataxin1 levels. Cell. 2015;160(6):1087–98. https://doi.org/10.1016/j.cell.2015.02.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Ingram M, Wozniak EAL, Duvick L, Yang R, Bergmann P, Carson R, et al. Cerebellar transcriptome profiles of ATXN1 transgenic mice reveal SCA1 disease progression and protection pathways. Neuron. 2016;89(6):1194–207. https://doi.org/10.1016/j.neuron.2016.02.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, et al. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med. 2015;7(1):78–101. https://doi.org/10.15252/emmm.201404392.

    Article  PubMed  CAS  Google Scholar 

  168. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14(3):269–76. https://doi.org/10.1038/ng1196-269.

    Article  PubMed  CAS  Google Scholar 

  169. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 1996;14(3):277–84. https://doi.org/10.1038/ng1196-277.

    Article  PubMed  CAS  Google Scholar 

  170. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–75. https://doi.org/10.1038/nature09320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kotter P, et al. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophys Acta. 2016;1862(9):1558–69. https://doi.org/10.1016/j.bbadis.2016.05.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Bar DZ, Charar C, Dorfman J, Yadid T, Tafforeau L, Lafontaine DL, et al. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor. Proc Natl Acad Sci U S A. 2016;113(32):E4620–9. https://doi.org/10.1073/pnas.1512156113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Meierhofer D, Halbach M, Sen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-knock-out mice show branched chain amino acids and fatty acids pathway alterations. Mol Cell Proteomics. 2016;15(5):1728–39. https://doi.org/10.1074/mcp.M115.056770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Wilusz CJ, Wilusz J. Eukaryotic Lsm proteins: lessons from bacteria. Nat Struct Mol Biol. 2005;12(12):1031–6. https://doi.org/10.1038/nsmb1037.

    Article  PubMed  CAS  Google Scholar 

  175. Kozlov G, Safaee N, Rosenauer A, Gehring K. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J Biol Chem. 2010;285(18):13599–606. https://doi.org/10.1074/jbc.M109.089540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M, et al. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics. 2015;16(3):181–92. https://doi.org/10.1007/s10048-015-0441-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Yokoshi M, Li Q, Yamamoto M, Okada H, Suzuki Y, Kawahara Y. Direct binding of Ataxin-2 to distinct elements in 3′ UTRs promotes mRNA stability and protein expression. Mol Cell. 2014;55(2):186–98. https://doi.org/10.1016/j.molcel.2014.05.022.

    Article  PubMed  CAS  Google Scholar 

  178. Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–71. https://doi.org/10.1038/nature22038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M, et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 2016;35(12):1276–97. https://doi.org/10.15252/embj.201593350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Palomo GM, Manfredi G. Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res. 2015;1607:36–46. https://doi.org/10.1016/j.brainres.2014.09.065.

    Article  PubMed  CAS  Google Scholar 

  181. Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, et al. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis. 2016;96:115–26. https://doi.org/10.1016/j.nbd.2016.09.002.

    Article  PubMed  CAS  Google Scholar 

  182. Zhang Y, Ling J, Yuan C, Dubruille R, Emery P. A role for Drosophila ATX2 in activation of PER translation and circadian behavior. Science. 2013;340(6134):879–82. https://doi.org/10.1126/science.1234746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Lim C, Allada R. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science. 2013;340(6134):875–9. https://doi.org/10.1126/science.1234785.

    Article  PubMed  CAS  Google Scholar 

  184. Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017;544(7650):362–6. https://doi.org/10.1038/nature22044.

    Article  PubMed  CAS  Google Scholar 

  185. Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 1996;399(3):344–9.

    Article  PubMed  CAS  Google Scholar 

  186. Violet M, Delattre L, Tardivel M, Sultan A, Chauderlier A, Caillierez R, et al. A major role for tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci. 2014;8:84. https://doi.org/10.3389/fncel.2014.00084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Zhang X, Lin Y, Eschmann NA, Zhou H, Rauch JN, Hernandez I, et al. RNA stores tau reversibly in complex coacervates. PLoS Biol. 2017;15(7):e2002183. https://doi.org/10.1371/journal.pbio.2002183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PEA, Cook C, Lummertz da Rocha E, et al. Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016;15(7):1455–66. https://doi.org/10.1016/j.celrep.2016.04.045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 2008;14(7):723–30. https://doi.org/10.1038/nm1784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Modarresi F, Faghihi MA, Patel NS, Sahagan BG, Wahlestedt C, Lopez-Toledano MA. Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int J Alzheimers Dis. 2011;2011:929042–11. https://doi.org/10.4061/2011/929042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Thomson SR, Seo SS, Barnes SA, Louros SR, Muscas M, Dando O, et al. Cell-type-specific translation profiling reveals a novel strategy for treating fragile X syndrome. Neuron. 2017;95(3):550–63 e5. https://doi.org/10.1016/j.neuron.2017.07.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

We thank Young Investigator Grant of NARSAD and Scientist Development Grant of American Heart Association for Yingwei Mao. This work is supported by NIH 1R21MH108983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwei Mao.

Ethics declarations

Conflict of Interest

The authors confirm that this article content has no conflicts of interest.

Additional information

This article is part of the Topical Collection on Neurogenesis and Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Dong, F. & Mao, Y. Control of CNS Functions by RNA-Binding Proteins in Neurological Diseases. Curr Pharmacol Rep 4, 301–313 (2018). https://doi.org/10.1007/s40495-018-0140-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0140-7

Keywords

Navigation