Skip to main content

Advertisement

Log in

Methods for the segmentation and classification of breast ultrasound images: a review

  • Review Paper
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

Breast ultrasound (BUS) is one of the imaging modalities for the diagnosis and treatment of breast cancer. However, the segmentation and classification of BUS images is a challenging task. In recent years, several methods for segmenting and classifying BUS images have been studied. These methods use BUS datasets for evaluation. In addition, semantic segmentation algorithms have gained prominence for segmenting medical images.

Methods

In this paper, we examined different methods for segmenting and classifying BUS images. Popular datasets used to evaluate BUS images and semantic segmentation algorithms were examined. Several segmentation and classification papers were selected for analysis and review. Both conventional and semantic methods for BUS segmentation were reviewed.

Results

Commonly used methods for BUS segmentation were depicted in a graphical representation, while other conventional methods for segmentation were equally elucidated.

Conclusions

We presented a review of the segmentation and classification methods for tumours detected in BUS images. This review paper selected old and recent studies on segmenting and classifying tumours in BUS images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smistad E, Falch TL, Bozorgi M, Elster AC, Lindseth F (2015) Medical image segmentation on GPUs—a comprehensive review. Med Image Anal 20(1):1–18

    PubMed  Google Scholar 

  2. Wang Z, Cui Z, Zhu Y (2020) Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation. Comput Biol Med 123:103823

    PubMed  Google Scholar 

  3. Huang Q, Luo Y, Zhang Q (2017) Breast ultrasound image segmentation: a survey. Int J CARS 12:493–507

    Google Scholar 

  4. Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Xue Y, Xu T, Zhang H, Long LR, Huang X (2018) Segan: adversarial network with multi-scale l 1loss for medical image segmentation. Neuroinformatics 16:1–10

    Google Scholar 

  6. Catalano O, Varelli C, Sbordone C et al (2019) A bump: what to do next? Ultrasound imaging of superficial soft-tissue palpable lesions. J Ultrasound. https://doi.org/10.1007/s40477-019-00415

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carlino G, Rinaldi P, Giuliani M et al (2019) Ultrasound-guided preoperative localization of breast lesions: a good choice. J Ultrasound 22:85–94. https://doi.org/10.1007/s40477-018-0335-0

    Article  PubMed  Google Scholar 

  8. Alikhassi A, Azizi F, Ensani F (2020) Imaging features of granulomatous mastitis in 36 patients with new sonographic signs. J Ultrasound 23:61–68. https://doi.org/10.1007/s40477-019-00392

    Article  PubMed  Google Scholar 

  9. Pesce K, Binder F, Chico MJ, Swiecicki MP, Galindo DH (2020) S Terrasa (2020) Diagnostic performance of shear wave elastography in discriminatingmalignant and benign breast lesions. J Ultrasound 23:575–583. https://doi.org/10.1007/s40477-020-00481-8

    Article  PubMed  Google Scholar 

  10. Bartolotta TV, Orlando AAM, Spatafora L, Dimarco M, Gagliardo C, Taibbi A (2020) S-Detect characterization of focal breast lesions according to the US BI RADS lexicon: a pictorial essay. J Ultrasound 23:207–215. https://doi.org/10.1007/s40477-020-00447-w

    Article  PubMed  PubMed Central  Google Scholar 

  11. Elia D, Fresilli D, Pacini P, Cardaccio S et al (2020) Can strain US-elastography with strain ratio (SRE) improve the diagnostic accuracy in the assessment of breast lesions? Preliminary results. J Ultrasound. https://doi.org/10.1007/s40477-020-00505-3

    Article  PubMed  Google Scholar 

  12. Guo R, Guolan Lu, Qin B, Fei B (2018) Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol 44(1):37–70

    PubMed  Google Scholar 

  13. Moon WK, Chienchang S, Huang CS, Chang R-F (2011) Breast tumor classification using fuzzy clustering for breast elastography. Ultrasound Med Biol 37(5):700–708

    PubMed  Google Scholar 

  14. Di Segni M, De Soccio V, Cantisani V et al (2018) Automated classification of focal breast lesions according to S detect: validation and role as a clinical and teaching tool. J Ultrasound 21(2):105–118

    PubMed  PubMed Central  Google Scholar 

  15. Wu JY, Zhao ZZ, Zhang WY, Liang M, Ou B, Yang HY, Luo BM (2019) Computer-aided diagnosis of solid breast lesions with ultrasound: factors associated with false-negative and false-positive results. J Ultrasound Med. https://doi.org/10.1002/jum.15020

    Article  PubMed  PubMed Central  Google Scholar 

  16. Caballo M, Pangallo DR, Mann RM, Sechopoulos I (2020) Deep learning-based segmentation of breast masses in dedicated breast CT imaging: radiomic feature stability between radiologists and artificial intelligence. Comput Biol Med 118:103629

    PubMed  Google Scholar 

  17. Sudarshan VK, Mookiah MRK, Acharya U, Chandran V, Molinari F, Fujita H, Ng KH (2016) Application of wavelet techniques for cancer diagnosis using ultrasound images: a review. Comput Biol Med 69:97–111

    PubMed  Google Scholar 

  18. Maolood IY, Yea A, Lu S (2018) Thresholding for medical image segmentation for cancer using fuzzy entropy with level set algorithm. Open Med Warsaw 13:374–383

    Google Scholar 

  19. Khosravanian A, Rahmanimanesh M, Keshavarzi P, Mozaffari S (2021) Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method. Comput Methods Progr Biomed 198:105809

    Google Scholar 

  20. Ikedo Y, Fukuoka D, Hara T, Fujita H, Takada E, Endo T, Morita T (2007) Development of a fully automatic scheme for detection of masses in whole breast ultrasound images. Med Phys 34:4378–4388

    PubMed  Google Scholar 

  21. Xu F, Xian M, Cheng H, Ding J, Zhang Y (2016) Unsupervised saliency estimation based on robust hypotheses. In: Proceedings of the IEEE WACV, pp 1–6.

  22. Yap MH (2008) A novel algorithm for initial lesion detection in ultrasound breast images. J Appl Clin Med Phys 9:181–199

    PubMed  PubMed Central  Google Scholar 

  23. Joo S, Yang YS, Moon WK, Kim HC (2004) Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Trans Med Imaging 23:1292–1300

    PubMed  Google Scholar 

  24. Shan J, Cheng HD, Wang YX (2008) A novel automatic seed point selection algorithm for breast ultrasound images. In: Proceedings of the ICPR, pp 3990–3993

  25. Chang RF, Wu WJ, Moon WK, Chen DR (2005) Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat 89:179–185

    PubMed  Google Scholar 

  26. Xian M, Cheng HD, Zhang Y (2014) A fully automatic breast ultrasound image segmentation approach based on neutro-connectedness. In: Proceedings of the ICPR, pp 2495–2500

  27. Gómez-Flores W, Aruiz-Ortega B (2016) New fully automated method for segmentation of breast lesions on ultrasound based on texture analysis. Ultrasound Med Biol 42(7):1637–1650

    PubMed  Google Scholar 

  28. Yu Y, Xiao Y, Cheng J, Chiu B (2018) Breast lesion classification based on supersonic shear-wave elastography and automated lesion segmentation from B-mode ultrasound images. Comput Biol Med 93:31–46

    PubMed  Google Scholar 

  29. Fan H, Meng F, Liu Y, Kong F, Ma J, Lv Z (2019) A novel breast ultrasound image automated segmentation algorithm based on seeded region growing integrating gradual equipartition threshold. Multimed Tools Appl 78:27915–27932

    Google Scholar 

  30. Massich J, Meriaudeau F, Pérez E, Martí R, Oliver A, Martí J (2010) Lesion segmentation in breast sonography. In: Martí J, Oliver A, Freixenet J, Martí R (eds) IWDM 2010. LNCS, vol 6136. Springer, Heidelberg, pp 39–45

    Google Scholar 

  31. Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275

    PubMed  Google Scholar 

  32. Kwak JI, Jung MN, Kim SH, Kim NC (2003) 3D segmentation of breast tumor in ultrasound images. In: Proceedings of the SPIE, MI, pp 193–200

  33. Kwak JI, Kim SH, Kim NC (2005) RD-based seeded region growing for extraction of breast tumor in an ultrasound volume. In: Proceedings of the computational intelligence and security, Springer, pp 799–808

  34. Madabhushi A, Metaxas DN (2003) Combining low, high level and empirical do- main knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans Med Imaging 22:155–169

    PubMed  Google Scholar 

  35. Massich J, Meriaudeau F, Pérez E, Martí R, Oliver A, Martí J (2010) Lesion segmentation in breast sonography. In: Proceedings of the digital mammography, Springer, pp 39–45

  36. Beucher S, Lantuéjoul C (1979) Use of watersheds in contour detection. In: Proceedings of the international workshop on image processing: real-time edge and motion detection/estimation, Rennes, France

  37. Cousty J, Bertrand G, Najman L, Couprie M (2009) Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell 31:1362–1374

    PubMed  Google Scholar 

  38. Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. In: Mathematical morphology in image processing, Marcel Dekker Inc., New York, pp 433–481

  39. Huang Y-L, Chen DR (2004) Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol 30:625–632

    PubMed  CAS  Google Scholar 

  40. Gomez W, Leija L, Alvarenga A, Infantosi A, Pereira W (2010) Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Med Phys 37(1):82–95

    PubMed  CAS  Google Scholar 

  41. Lo CM, Chen RT, Chang YC, Yang YW, Hung MJ, Huang CS, Chang RF (2014) Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed. IEEE Trans Med Imaging 33:1503–1511

    PubMed  Google Scholar 

  42. Gu P, Lee W, Roubidoux MA, Yuan J, Wang X, Carson PL (2016) Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics 65:51–58

    PubMed  CAS  Google Scholar 

  43. Lee S, Huang Q, Jin L, Lu M, Wang T (2010) A graph-based, segmentation method for breast tumors in ultrasound images. In: Proceedings of IEEE iCBBE, pp 1–4

  44. Zhang Q, Zhao X, Huang Q (2014) A multi-objectively-optimized graph-based segmentation method for breast ultrasound image. In: International conference on biomedical engineering and informatics, pp 116–120

  45. Daoud MI, Atallah AA, Awwad F, Al-Najjar M, Alazrai R (2019) Automatic superpixel-based segmentation method for breast ultrasound images. Expert Syst Appl 121:78–96

    Google Scholar 

  46. Ilesanmi AE, Idowu OP, Makhanov SS (2020) Multiscale superpixel method for segmentation of breast ultrasound. Comput Biol Med 125:103879

    PubMed  Google Scholar 

  47. Huang Q, Lee S, Liu L, Lu M, Jin L, Li A (2012) A robust graph-based segmentation method for breast tumors in ultrasoundimages. Ultrasonics 52:266–275

    PubMed  Google Scholar 

  48. Huang Q, Bai X, Li Y, Jin L, Li X (2014) Optimized graph-based segmentation for ultrasound images. Neurocomputing 129:216–224

    Google Scholar 

  49. Zhou Z, Wu W, Wu S, Tsui P, Lin C, Zhang L, Wang T (2014) Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrason Imaging 36(4):256–276

    PubMed  Google Scholar 

  50. Xian M, Zhang Y, Cheng HD (2015) Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recogn 48:485–497

    Google Scholar 

  51. Ramadan H, Lachqar C, Tairi H (2020) Saliency-guided automatic detection and segmentation of tumor inbreast ultrasound images. Biomed Signal Process Control 60:101945

    Google Scholar 

  52. Karunanayake N, Aimmanee P, Lohitvisate W, Makhanov SS (2020) Particle method for segmentation of breast tumors in ultrasound images. Math Comput Simul 170:257–284

    Google Scholar 

  53. Keatmanee C, Chaumrattanakul U, Kotani K, Makhanov SS (2019) Initialization of active contours for segmentation of breast cancer via fusion of ultrasound Doppler, and elasticity images. Ultrasonics 94:438–453

    PubMed  Google Scholar 

  54. Rodtook A, Kirimasthong K, Lohitvisate W, Makhanov SS (2018) Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities. Pattern Recogn 79:172–182

    Google Scholar 

  55. Zhao W, Xu X, Liu P, Xu F, He L (2020) The improved level set evolution for ultrasound imagesegmentation in the high-intensity focused ultrasound ablationtherapy. Optik Int J Light Electron Opt 202:163669

    Google Scholar 

  56. Rodrigues R, Braz R, Pereira M, Moutinho J, Pinheiro AMG (2015) A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Biol Med 41(6):1737–1748

    Google Scholar 

  57. Wang W, Zhu L, Qin J, Chui Y, Li B, Heng P (2014) Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Opt Lasers Eng 54:105–116

    Google Scholar 

  58. Guo Y, Şengür A, Tian J-W (2015) A novel breast ultrasound image segmentation algorithm based on neutrosophic similarity score and level set. Comput Methods Progr Biomed 123:43–53

    Google Scholar 

  59. Panigrahi L, Verma K, Singh BK (2019) Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Expert Syst Appl 115:486–498

    Google Scholar 

  60. Huang Q, Yang F, Liu L, Li X (2015) Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf Sci 314:293–310

    Google Scholar 

  61. Lang I, Levy MS, Spitzer H (2016) Multiscale texture-based level-set segmentation of breast B-mode images. Comput Biol Med 72:30–42

    PubMed  Google Scholar 

  62. Huang Q, Huang Y, Luo Y, Yuan F, Li X (2020) Segmentation of breast ultrasound image with semantic classification of superpixels. Med Image Anal 61:101657

    PubMed  Google Scholar 

  63. Lai Y, Huang Y, Wang D, Tiu C, Chou Y, Chang R (2013) Computer-aided diagnosis for 3-D power Doppler breast ultrasound. Ultrasound Med Biol 39(4):555–567

    PubMed  Google Scholar 

  64. Moon WK, Chang S, Chang JM, Cho N, Huang C, Kuo J, Chang R (2013) Classification of breast tumors using elastographic and B-mode features: comparison of automatic selection of representative slice and physician-selected slice of images. Ultrasound Med Biol 39(7):1147–1157

    PubMed  Google Scholar 

  65. Kriti, Virmani J, Agarwal R (2019) Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybern Biomed Eng 39:536–560

    Google Scholar 

  66. Selvan S, Devi SS (2015) Automatic seed point selection in ultrasound echography images of breast using texture features. Biocybern Biomed Eng 35:157–168

    Google Scholar 

  67. Liu Y, Chen Y, Han B, Zhang Y, Zhang X, Su Y (2018) Fully automatic Breast ultrasound image segmentation based on fuzzy cellular automata framework. Biomed Signal Process Control 40:433–442

    Google Scholar 

  68. Moon WK, Chen I, Yi A, Bae MS, Shin SU, Chang R (2018) Computer-aided pre diction model for axillary lymph node metastasis in breast cancer using tumor morphological and textural features on ultrasound. Comput Methods Progr Biomed 162:129–137

    Google Scholar 

  69. Huang Y, Takada E, Konno S, Huang C, Kuo M, Chang R (2018) Computer-aided tumor diagnosis in 3-D breast elastography. Comput Methods Progr Biomed 153:201–209

    Google Scholar 

  70. Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recogn 43:2028–2042

    Google Scholar 

  71. Rodtook A, Makhanov SS (2013) Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J Vis Commun Image R 24:1414–1430

    Google Scholar 

  72. Xu C, Prince JL (1998) Generalized gradient vector flow external forces for active contours. Signal Process 71(2):131–139

    Google Scholar 

  73. Vakanski T, Xian M, Freer PE (2020) Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 46:2819–2833

    PubMed  PubMed Central  Google Scholar 

  74. Byra M, Jarosik P, Szubert A, Galperin M, Ojeda-Fournier H, Olson L, O’Boyle M, Comstock C, Andre M (2020) Breast mass segmentation in ultrasound with selective kernel U-Netconvolutional neural network. Biomed Signal Process Control 61:102027

    PubMed  PubMed Central  Google Scholar 

  75. Osman FM, Yap MH (2020) Adjusted quick shift phase preserving dynamic range compression method for breast lesions segmentation. Inform Med Unlocked 20:100344

    Google Scholar 

  76. Singh VK, Abdel-Nasser M, Akram F, Rashwan HA, Sarker MMK, Pandey N, Romani S, Puig D Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Syst Appl (in press)

  77. Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethinking Atrous convolution for semantic image segmentation. arXiv preprint. arXiv:1706.05587

  78. Rodrigues PS (2017) Breast ultrasound image. Mendeley Data. https://doi.org/10.17632/wmy84gzngw.1

  79. Han L, Huang Y, Dou H, Wang S, Ahamad S, Luo H, Liu Q, Fan J, Zhang J (2020) Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Comput Methods Progr Biomed 189:105275

    Google Scholar 

  80. Yap MH, Goyal M, Osman F, Martí R, Denton E, Juette A, Zwiggelaar R (2020) Breast ultrasound region of interest detection and lesion localization. Artif Intell Med 107:101880

    PubMed  Google Scholar 

  81. Moon WK, Lee Y, Ke H, Lee SH, Huang C, Chang R (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Progr Biomed 190:105361

    Google Scholar 

  82. Mohammed MA, Al-Khateeb B, Rashid AN, Ibrahim DA, Ghani MK, Mostaf SA (2018) Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Comput Electr Eng 70:871–882

    Google Scholar 

  83. Singh BK, Verma K, Thoke AS (2015) Adaptive gradient descent backpropagation for classification of breast tumors in ultrasound imaging. Proc Comput Sci 46:1601–1609

    Google Scholar 

  84. Ding J, Cheng HD, Xian M, Zhang Y, Xu F (2015) Local-weighted citation-kNN algorithm for breast ultrasound image classification. Optik 126:5188–5193

    Google Scholar 

  85. Abdel-Nasser M, Melendez J, Morenoa A, Omer OA, Puig D (2017) Breast tumor classification in ultrasound images using texture analysis and super-resolution methods. Eng Appl Artif Intell 59:84–92

    Google Scholar 

  86. Shi X, Cheng HD, Hu L, Ju W, Tian J (2010) Detection and classification of masses in breast ultrasound images. Digit Signal Process 20:824–836

    Google Scholar 

  87. Liu Y, Ren L, Cao X, Tong Y (2020) Breast tumors recognition based on edge feature extraction using support vector machine. Biomed Signal Process Control 58:101825

    Google Scholar 

  88. Byra M (2018) Discriminant analysis of neural style representations for breast lesion classification in ultrasound. Bio Cybern Biomed Eng 38:684–690

    Google Scholar 

  89. Jarosik P, Klimonda Z, Lewandowski M, Byra M (2020) Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks. Biocybern Biomed Eng 40:977–986

    Google Scholar 

  90. Singh BK, Verma K, Thoke AS (2016) Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Syst Appl 66:114–123

    Google Scholar 

  91. Zhou S, Shi J, Zhu J, Cai Y, Wang R (2013) Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image. Biomed Signal Process Control 8:688–696

    Google Scholar 

  92. Huang YL, Chen DR, Jiang YR, Kuo SJ, Wu HK, Moon W (2008) Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Ultrasound Obstet Gynecol 32:565–572

    PubMed  Google Scholar 

  93. Xu Y, Wang Y, Yuan J, Cheng Q, Wang X, Carson PL (2019) Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91:1–9

    PubMed  Google Scholar 

  94. Kozegar E, Soryani M, Behnam H, Salamati M, Tan T (2017) Breast cancer detection in automated 3D breast ultrasound using iso-contours and cascaded RUSBoosts. Ultrasonics 79:68–80

    PubMed  Google Scholar 

  95. Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A (2020) Dataset of breast ultrasound images. Data Brief 28:1048

    Google Scholar 

  96. Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Byra M, Nowicki A (2017) Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Med Phys 44(11):6105–6109

    PubMed  Google Scholar 

  97. Prapavesis S, Fornage B, Palko A, Weismann C, Zoumpoulis P (2003) Breast ultrasound and US-guided interventional techniques: a multimedia teaching file. Thessaloniki, Greece

    Google Scholar 

  98. Jain AK, Zhong Y, Lakshmanan S (1996) Object matching using deformable templates. IEEE Trans Pattern Anal Mach Intell 18(3):267–278

    Google Scholar 

  99. Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Byra M, Nowicki A (2017) Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Med Phys 44:6105–6109

    PubMed  Google Scholar 

  100. Abdel-Nasser M, Melendez J, Moreno A, Omer OA, Puig D (2017) Breast tumorclassification in ultrasound images using texture analysis and super-resolution methods. Eng Appl Artif Intell 59:84–92

    Google Scholar 

  101. Moon WK, Lo C, Cho N, Chang JM, Huang C, Chen J, Chang R (2013) Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Comput Methods Progr Biomed II I:84–92

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Thailand Research Fund; Grant RSA6280098 and the Center of Excellence in Biomedical Engineering of Thammasat University. Thanks to the anonymous referees of the review for valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ademola E. Ilesanmi or Stanislav S. Makhanov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study did not use any human participants and no animal experiments were performed by any of the authors.

Informed consent

This article does not contain patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilesanmi, A.E., Chaumrattanakul, U. & Makhanov, S.S. Methods for the segmentation and classification of breast ultrasound images: a review. J Ultrasound 24, 367–382 (2021). https://doi.org/10.1007/s40477-020-00557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-020-00557-5

Keywords

Navigation