Skip to main content
Log in

Vascular ultrasound in pediatrics: estimation of depth and diameter of jugular and femoral vessels

  • Original Article
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Objectives

To estimate, on the basis of anthropometric and demographic variables, the depth (Dp) and diameter (Dm) of femoral and jugular vessels, which have been located and measured by ultrasound, in pediatric patients.

Method

750 measurements of Dp and Dm of the femoral vein (FV), femoral artery (FA) and internal jugular vein (IJV) were made in 125 pediatric patients. The values were correlated with patients’ sex, weight, age, size and body surface area (BSA).

Results

Mean Dp values were 0.72 (0.34) cm for FA, 0.79 (0.35) cm for FV and 0.77 (0.24) cm for IJV. Mean antero-posterior Dm values were 0.37 (0.17) cm for FA, 0.42 (0.22) cm for FV and 0.59 (0.23) cm for IJV. In the studied pediatric patients, femoral and jugular vessels depth correlated with age, size, weight and BSA (R = 0.46–0.60); vascular depth could be estimated from patients’ weight and size (FA-Dp: R = 0.71; FV-Dp: R = 0.72; IJV-Dp: R = 0.53). Correlation with diameter was better for FA and FV (R = 0.81–0.89) than for IJV (R = 0.42–0.51); vascular diameter could be estimated from patient’s size (FA-Dm: R = 0.89; FV-Dm: R = 0.86; IJV-Dm: R = 0.52).

Conclusions

FV, FA and IJV depth and diameter correlated with weight, size, age and body surface area in the studied pediatric patients. Correlation was better for femoral than for jugular vessels. Depth could be estimated from patients’ weight and size, while diameter could be estimated from the size. Such estimations may facilitate the choice of vessels to be cannulated, length and diameter of cannulation needles and the diameter of catheters to be used in pediatric patients.

Sommario

Obiettivi

Calcolare in base a variabili antropometriche e demografiche, la profondita’ (P) e il diametro (D) dei vasi femorali e giugulari dei pazienti pediatrici in seguito alla loro localizzazione e misurazione ecografica.

Metodi

Sono state effettuatte 750 misurazioni della P e del D della vena femorale (VF), arteria femorale (AF) e della vena giugulare interna (VGI) in 125 pazienti pediatrici. I valori ottenuti sono stati relazionati con il sesso, il peso, l’eta’, l’altezza e la superficie corporea.

Risultati

La P media dell’ AF (PAF) è risultata di 0.72 (0.34) cm, quella della VF (PVF) di 0.79 (0.35) cm e quella della VGI (PVGI) di 0.77 (0.24) cm. Il D anteroposteriore medio dell’ AF (DAF) fu di 0.37 (0.17) cm, quello della VF (DVF) èrisultato di 0.42 (0.22) cm e quello della VGI (DVGI) di 0.59 (0.23) cm. Nei pazienti pediatrici analizzati, è stata riscontrata una relazione tra i parametri di eta’, peso, altezza e superficie corporea e quelli della profondita’ dei vasi femorali e giugulari (R = 0.46–0.60), che pùo essere stimata secondo peso e altezza (PAF: R = 0.71; PVF: R = 0.72; PVGI R = 0.53). La relazione con il diametro vascolare è risultata maggiore per l’ AF e la VF (R = 0.81–0.89) e piu’ bassa per la VGI (R = 0.42–0.51), che può essere stimata in base all’altezza del paziente (DAF: R = 0.89; DVF: R = 0.86; DVGI: R = 0.52).

Conclusioni

La profondita’ e il diametro della VF, dell’AF e della VGI si possono relazionare al peso, altezza, eta’ e superficie corporea nei pazienti pediatrici del nostro studio. Questa relazione e’ maggiore per i vasi femorali rispetto ai vasi giugulari, rendendo possibile il calcolo della loro profondita’ in base al peso e all’altezza e il calcolo del loro diametro vascolare in base all’altezza. Questi calcoli possono essere utili per la scelta adeguata del vaso da canalizzare, per la scelta del tipo e del calibro dell’ago e del catetere da usare nei pazienti pediatrici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chiang VW, Baskin MN (2000) Uses and complications of central venous catheters inserted in a pediatric emergency department. Pediatr Emerg Care 16(4):230–232

    Article  CAS  PubMed  Google Scholar 

  2. Orlowski JP (1984) My kingdom for an intravenous line. Am J Dis Child 138(9):803

    CAS  PubMed  Google Scholar 

  3. Larsen P, Eldridge D, Brinkley J, Newton D, Goff D, Hartzog T et al (2010) Pediatric peripheral intravenous access: does nursing experience and competence really make a difference? J Infus Nurs Off Publ Infus Nurses Soc 33(4):226–235

    Article  Google Scholar 

  4. Yen K, Riegert A, Gorelick MH (2008) Derivation of the DIVA score: a clinical prediction rule for the identification of children with difficult intravenous access. Pediatr Emerg Care 24(3):143–147

    Article  PubMed  Google Scholar 

  5. Rauch D, Dowd D, Eldridge D, Mace S, Schears G, Yen K (2009) Peripheral difficult venous access in children. Clin Pediatr (Phila) 48(9):895–901

    Article  Google Scholar 

  6. O’Neill MB, Dillane M, Hanipah NFA (2012) Validating the difficult intravenous access clinical prediction rule. Pediatr Emerg Care 28(12):1314–1316

    Article  PubMed  Google Scholar 

  7. Froehlich CD, Rigby MR, Rosenberg ES, Li R, Roerig P-LJ, Easley KA et al (2009) Ultrasound-guided central venous catheter placement decreases complications and decreases placement attempts compared with the landmark technique in patients in a pediatric intensive care unit. Crit Care Med 37(3):1090–1096

    Article  PubMed  Google Scholar 

  8. Maecken T, Grau T (2007) Ultrasound imaging in vascular access. Crit Care Med 35(5 Suppl):S178–S185

    Article  PubMed  Google Scholar 

  9. Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C et al (2003) Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 327(7411):361

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pérez-Quevedo O, López-Álvarez JM, Limiñana-Cañal JM, Loro-Ferrer JF (2016) Design and application of model for training ultrasound-guided vascular cannulation in pediatric patients. Med Intensiva 40(6):364–370

    Article  PubMed  Google Scholar 

  11. Warkentine FH, Clyde Pierce M, Lorenz D, Kim IK (2008) The anatomic relationship of femoral vein to femoral artery in euvolemic pediatric patients by ultrasonography: implications for pediatric femoral central venous access. Acad Emerg Med Off J Soc Acad Emerg Med 15(5):426–430

    Article  Google Scholar 

  12. Eksioglu AS, Tasci Yildiz Y, Senel S (2014) Normal sizes of internal jugular veins in children/adolescents aged birth to 18 years at rest and during the Valsalva maneuver. Eur J Radiol 83(4):673–679

    Article  PubMed  Google Scholar 

  13. Breschan C, Platzer M, Jost R, Stettner H, Likar R (2010) Size of internal jugular vs subclavian vein in small infants: an observational, anatomical evaluation with ultrasound. Br J Anaesth 105(2):179–184

    Article  CAS  PubMed  Google Scholar 

  14. Akingbola OA, Nielsen J, Hopkins RL, Frieberg EM (2000) Femoral vein size in newborns and infants: preliminary investigation. Crit Care Lond Engl 4(2):120–123

    Article  CAS  Google Scholar 

  15. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098

    CAS  PubMed  Google Scholar 

  16. World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194

    Article  Google Scholar 

  17. Steinberg C, Weinstock DJ, Gold JP, Notterman DA (1992) Measurements of central blood vessels in infants and children: normal values. Cathet Cardiovasc Diagn 27(3):197–201

    Article  CAS  PubMed  Google Scholar 

  18. Alderson PJ, Burrows FA, Stemp LI, Holtby HM (1993) Use of ultrasound to evaluate internal jugular vein anatomy and to facilitate central venous cannulation in paediatric patients. Br J Anaesth 70(2):145–148

    Article  CAS  PubMed  Google Scholar 

  19. Sayin MM, Mercan A, Koner O, Ture H, Celebi S, Sozubir S et al (2008) Internal jugular vein diameter in pediatric patients: are the J-shaped guidewire diameters bigger than internal jugular vein? An evaluation with ultrasound. Paediatr Anaesth 18(8):745–751

    Article  PubMed  Google Scholar 

  20. Mortensen JD, Talbot S, Burkart JA (1990) Cross-sectional internal diameters of human cervical and femoral blood vessels: relationship to subject’s sex, age, body size. Anat Rec 226(1):115–124

    Article  CAS  PubMed  Google Scholar 

  21. Karazincir S, Akoğlu E, Balci A, Sangün O, Okuyucu S, Ozbakiş C et al (2007) Dimensions of internal jugular veins in Turkish children aged between 0 and 6 years in resting state and during Valsalva maneuver. Int J Pediatr Otorhinolaryngol 71(8):1247–1250

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. López Álvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in relation with this study.

Ethical approval

The study protocol followed the basic principles of the World Medical Association Declaration of Helsinki and was approved by the Ethical Committee of Clinical Trials of our Hospital.

Informed consent

Informed consent was requested from patients’ parents or legal representatives.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Álvarez, J.M., Pérez Quevedo, O., Santana Cabrera, L. et al. Vascular ultrasound in pediatrics: estimation of depth and diameter of jugular and femoral vessels. J Ultrasound 20, 285–292 (2017). https://doi.org/10.1007/s40477-017-0272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-017-0272-3

Keywords

Navigation