Skip to main content
Log in

Novel robust super twisting integral sliding mode controller for a quadrotor under external disturbances

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a novel robust nonlinear control strategy for a disturbed quadrotor is proposed. The Euler-Newton formula is used to establish the quadrotor’s dynamic model with its external disturbances. The super twisting algorithm combined with the proportional integral derivative sliding mode control modified is designed to solve the problem of trajectory tracking and to stabilize the quadrotor attitude. The proposed controller based on the second-order sliding mode technique ensures the good robustness against the time-varying of the external disturbances solves the chattering problem and avoids discontinuousness of input signals in the integral sliding mode controller. The Lyapunov theorem is used to validate the stability of the rotational and the translational controller. In order to show the effectiveness and feasibility of the proposed control, simulation results under different scenarios are presented. The proposed control strategy is compared to an integral sliding mode controller to demonstrate its superiority and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hassanalian M, Abdelkefi A (2017) Classifications, applications, and design challenges of drones: a review. Prog Aerosp Sci 91:99–131. https://doi.org/10.1016/j.paerosci.2017.04.003

    Article  Google Scholar 

  2. Shakhatreh H, Sawalmeh A, Al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman NS, Khreishah A, Guizani M (2018) Unmanned aerial vehicles: a survey on civil applications and key research challenges. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2909530

    Article  Google Scholar 

  3. Hoffmann GM, Huang H, Waslander SL, Tomlin CJ (2011) Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng Pract 19:1023–1036. https://doi.org/10.1016/j.conengprac.2011.04.005

    Article  Google Scholar 

  4. Zhao B, Xian B, Member S, Zhang Y, Zhang X (2014) Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans Ind Electron 0046:1–12. https://doi.org/10.1109/TIE.2014.2364982

    Article  Google Scholar 

  5. Yang H, Cheng L, Xia Y, Yuan Y (2018) Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind. IEEE Trans Control Syst Technol 26:1400–1405. https://doi.org/10.1109/TCST.2017.2710951

    Article  Google Scholar 

  6. Xiong JJ, Zhang GB (2017) Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans 66:233–240

    Article  Google Scholar 

  7. Bouzid Y, Siguerdidjane H, Bestaoui Y (2017) Nonlinear internal model control applied to VTOL multi-rotors UAV. Mechatronics 47:49–66

    Article  Google Scholar 

  8. Dzul A (2018) Nonlinear PID-type controller for quadrotor trajectory tracking. IEEE/ASME Trans Mech 4435:1–11

    Google Scholar 

  9. Labbadi M, Cherkaoui M (2019) Robust integral terminal sliding mode control for quadrotor UAV with external disturbances. Int J Aerosp Eng 2019:2016416

    Article  Google Scholar 

  10. Labbadi M, Cherkaoui M (2019) Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp Sci Technol 1:105306

    Article  Google Scholar 

  11. Dong W, Gu G-Y, Zhu X, Ding H (2016) A high-performance flight control approach for quadrotors using a modified active disturbance rejection technique. Robot Auton Syst 83:18–177

    Article  Google Scholar 

  12. Antonelli G, Cataldi E, Arrichiello F, Giordano PR, Chiaverini S, Franchi A (2017) Adaptive trajectory tracking for quadrotor MAVs in presence of parameter uncertainties and external disturbances. IEEE Trans Control Syst Technol 26:248–254

    Article  Google Scholar 

  13. Ma D, Xia Y, Shen G, Jia Z, Li T (2018) Flatness-based adaptive sliding mode tracking control for a quadrotor with disturbances. J Franklin Inst 355:6300–6322

    Article  MathSciNet  Google Scholar 

  14. González-Sierra J, Ríos H, Dzul A (2018) Quad-Rotor robust time-varying formation control: a continuous sliding-mode control approach. Int J Control. https://doi.org/10.1080/00207179.2018.1526413

    Article  MATH  Google Scholar 

  15. Jayakrishnan HJ (2016) Position and attitude control of a quadrotor UAV using super super twisting sliding mode. IFAC-PapersOnLine 49:284–289

    Article  MathSciNet  Google Scholar 

  16. Alexis K, Nikolakopoulos G, Tzes A (2014) On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances. Asian J Control 16:209–224

    Article  MathSciNet  Google Scholar 

  17. Jia Z, Yu J, Mei Y, Chen Y, Shen Y, Ai X (2017) Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp Sci Technol 68:299–307

    Article  Google Scholar 

  18. Guerrero-Sánchez ME, Abaunza H, Castillo P et al (2017) Quadrotor energy-based control laws: a unit-quaternion approach. J Intell Robot Syst 88:347–377

    Article  Google Scholar 

  19. Bouyahia S, Semcheddine S, Talbi B et al (2019) An adaptive super-twisting sliding mode algorithm for robust control of a biotechnological process. Int J Dyn Control 60:1–11

    Google Scholar 

  20. Shao X, Liu J, Wang H (2018) Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator. Mech Syst Signal Process 104:631–647

    Article  Google Scholar 

  21. Hua C, Chen J, Guan X (2018) Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance. J Franklin Inst 355:6323–6338

    Article  MathSciNet  Google Scholar 

  22. Chen F, Lei W, Zhang K, Tao G, Jiang B (2016) A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn 85:1281–1295

    Article  Google Scholar 

  23. Lozano R, Salazar S, Espinoza ES et al (2016) Second order sliding mode controllers for altitude control of a quadrotor UAS: real-time implementation in outdoor environments. Neurocomputing 233:61–71

    Google Scholar 

  24. Babaei AR, Malekzadeh M, Madhkhan D (2019) Adaptive super-twisting sliding mode control of 6-DOF nonlinear and uncertain air vehicle. Aerosp Sci Technol 84:361–374

    Article  Google Scholar 

  25. Labbadi M, Cherkaoui M, houm Y El, Guisser M (2018) Modeling and robust integral sliding mode control for a quadrotor unmanned aerial vehicle. In: 2018 6th international renewable energy conference, pp 1–6

  26. Zhang X, Xian B, Zhao B, Zhang Y (2015) Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision. IEEE Trans Ind Electron 62:6392–6403

    Article  Google Scholar 

  27. Labbadi M, Cherkaoui M (2019) Robust adaptive nonsingular fast terminal sliding mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISAT Tansact. https://doi.org/10.1016/j.isatra.2019.10.012

    Article  Google Scholar 

  28. Labbadi M, Cherkaoui M, El Houm Y, Guisser M (2019) A comparative analysis of control strategies for stabilizing a quadrotor. Smart Innov Syst Technol 111:625–630

    Article  Google Scholar 

  29. Mo H, Farid G (2018) Nonlinear and adaptive intelligent control techniques for quadrotor UAV–a survey. Asian J Control 21:1–20

    MathSciNet  Google Scholar 

  30. Rahmani M, Komijani H, Ghanbari A, Ettefagh MM (2018) Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective Bat algorithm. Microsyst Technol 24:2835–2846

    Article  Google Scholar 

  31. Derafa L, Benallegue A, Fridman L (2012) Super twisting control algorithm for the attitude tracking of a four rotors UAV. J Franklin Inst 349:685–699

    Article  MathSciNet  Google Scholar 

  32. Alejandro D, Moreno JA, Fridman L (2009) Reaching time estimation for super-twisting based on Lyapunov function. IEEE Conf Decis Control 163:1–6

    Google Scholar 

  33. Hang Y, Shiqian W, Qin L, Yimin Z (2017) Robust integral sliding mode controller for quadrotor flight. In: IEEE conference Chinese automation congress (CAC)

  34. Freire FP, Martins NA, Splendor F (2018) A simple optimization method for tuning the gains of PID controllers for the autopilot of cessna 182 aircraft using model-in-the-loop platform. J Control Autom Electr Syst 29:441–450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Labbadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labbadi, M., Cherkaoui, M. Novel robust super twisting integral sliding mode controller for a quadrotor under external disturbances. Int. J. Dynam. Control 8, 805–815 (2020). https://doi.org/10.1007/s40435-019-00599-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-019-00599-6

Keywords

Navigation