Skip to main content

Advertisement

Log in

Rich dynamics of non-toxic phytoplankton, toxic phytoplankton and zooplankton system with multiple gestation delays

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2019

This article has been updated

Abstract

The plankton community is classified into three category of species, namely, non-toxic phytoplankton (NTP), toxic phytoplankton (TPP) and zooplankton. In this work we have introduced a mathematical model for the interaction of NTP, TPP and zooplankton population in an open marine system. We have incorporated two time delays and observed important mathematical characteristics of the proposed model such as positivity, boundedness, stability and Hopf-bifurcation for all possible combinations of both the delays at the interior equilibrium point of the model system. It is noted that increase in gestation delay may lead to the destabilization of stationary points through the creation of limit cycles. Various numerical simulations are performed to validate the analytical findings obtained here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 05 February 2019

    In the original publication, Theorem 4.6 has been published incorrectly.

References

  1. Saha T, Bandyopadhyay M (2009) Dynamical analysis of toxin producing phytoplankton–zooplankton interactions. Nonlinear Anal Real World Appl 10:314–332

    Article  MathSciNet  Google Scholar 

  2. Smayda T (1997) What is a bloom? A commentary. Limnol Oceonogr 42:1132–1336

    Article  Google Scholar 

  3. Anderson DM (1989) Toxic algae blooms and red tides: a global perspective. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides biology, environmental science and toxicology. Elsevier, New York, pp 11–16

    Google Scholar 

  4. Hallegraeff GM (1993) A review of harmful algae blooms and the apparent global increase. Phycologia 15:79–99

    Article  Google Scholar 

  5. Smayda T (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds) Toxin marine phytoplankton. Elsevier, New York, pp 29–40

    Google Scholar 

  6. Blaxter JHS, Southward AJ (1997) Advance in marine biology. Academic Press, London

    Google Scholar 

  7. Mukhopadhyay B, Bhattacharyya R (2008) Role of gestation delay in a plankton fish model under stochastic fluctuations. Math Biosci 215:26–34

    Article  MathSciNet  Google Scholar 

  8. Stoermer EF, Smol JP (1999) The diatoms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Chattopadhyay J, Sarkar RR, Mandal S (2002) Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling. J Theor Biol 215:333–344

    Article  Google Scholar 

  10. Roy S, Alam S, Chattopadhyay J (2006) Competitive effects of toxin-producing phytoplankton on the overall plankton populations in the Bay of Bengal. Bull Math Biol 68(8):2303–2320

    Article  MathSciNet  Google Scholar 

  11. Sarkar RR, Chattopadhayay J (2003) The role of environmental stochasticity in a toxic phytoplankton–non-toxic phytoplankton–zooplankton system. Environmetrics 14:775–792

    Article  Google Scholar 

  12. Roy S, Bhattacharya S, Das P, Chattopadhyay J (2007) Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton: inferences from field observations. J Biol Phys 33:1–17

    Article  Google Scholar 

  13. Jang SR-J, Baglama J, Rick J (2006) Nutrient-phytoplankton–zooplankton models with a toxin. Math Comput Model 43(1–2):105–118

    Article  MathSciNet  Google Scholar 

  14. Roy S (2009) The coevolution of two phytoplankton species on a single resource: allelopathy as a pseudo-mixotrophy. Theor Popul Biol 75(1):68–75

    Article  Google Scholar 

  15. MacDonald M (1989) Biological delay system: linear stability theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Beretta E, Kuang Y (2002) Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J Math Anal 33(5):1144–1165

    Article  MathSciNet  Google Scholar 

  17. Mondal S, Maiti A, Samanta GP (2018) Effects of fear and additional food in a delayed predator–prey model. Biophys Rev Lett. https://doi.org/10.1142/S1793048018500091

    Article  Google Scholar 

  18. Sharma S, Mondal A, Pal AK, Samanta GP (2018) Stability analysis and optimal control of avian influenza virus A with time delays. Int J Dyn Control 6(3):1351–1366

    Article  MathSciNet  Google Scholar 

  19. Chattopadhyay J, Sarkar RR, El Abdllaoui A (2002) A delay differential equation model on harmful algal blooms in the presence of toxic substances. J Math Appl Med Biol 19(2):137–161

    Article  Google Scholar 

  20. Hale JK (1969) Ordinary differential equations. Wiley, New York

    MATH  Google Scholar 

  21. Hale JK (1977) Theory of functional differential equations. Springer, Heidelberg

    Book  Google Scholar 

  22. Das A, Samanta GP (2018) Stochastic prey–predator model with additional food for predator. Physica A 512:121–141

    Article  MathSciNet  Google Scholar 

  23. Das A, Samanta GP (2018) Modeling the fear effect on a stochastic prey–predator system with additional food for the predator. J Phys A Math Theor 51:465601

    Article  MathSciNet  Google Scholar 

  24. Mondal A, Pal AK, Samanta GP (2018) On the dynamics of evolutionary Leslie–Gower predator–prey eco-epidemiological model with disease in predator. Ecol Genet Genom. https://doi.org/10.1016/j.egg.2018.11.002

    Article  Google Scholar 

  25. Saha S, Samanta GP (2019) Modelling and optimal control of HIV/AIDS prevention through PrEP and limited treatment. Physica A 516:280–307

    Article  MathSciNet  Google Scholar 

  26. Sangeeta S, Samanta GP (2018) Influence of dispersal and strong Allee effect on a two-patch predator–prey model. Int J Dyn Control. https://doi.org/10.1007/s40435-018-0490-3

    Article  MathSciNet  Google Scholar 

  27. Sangeeta S, Alakes M, Samanta GP (2018) A Michaelis–Menten predator–prey model with strong Allee effect and disease in prey incorporating prey refuge. Int J Bifurc Chaos 28(6):1850073

    Article  MathSciNet  Google Scholar 

  28. Yang X, Chen L, Chen J (1996) Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Comput Math Appl 32(4):09–116

    Article  MathSciNet  Google Scholar 

  29. Birkhoff G, Rota GC (1982) Ordinary differential equations. Ginn, Boston

    MATH  Google Scholar 

  30. LaSalle JP (1976) The stability of dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  31. Gard TC, Hallam TG (1979) Persistence in food web-1, Lotka–Voltterra food chains. Bull Math Biol 41:302–315

    Google Scholar 

  32. Freedman HI, Rao VSH (1983) The tradeoff between mutual interference and time lag in predator prey models. Bull Math Biol 45:991–1004

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and Editor in Chief Prof. Jian-Qiao Sun for their careful reading, valuable comments and helpful suggestions, which have helped them to improve the presentation of this work significantly. The first author (Ashok Mondal) is thankful to the University Grants Commission, India for providing SRF (RGNF). The second author (A. K. Pal) acknowledges financial support from UGC, India (MRP No.-PSW-128/15-16 (ERO)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Mondal.

Appendices

Appendix A

Proof of the Proposition

Proof

Now we study the local stability behaviour of the equilibrium points by computing corresponding variational matrix:

$$\begin{aligned}&\displaystyle V(X_1,X_2,Y)\nonumber \\&\quad = \left[ \begin{array}{ccc} k_1-2\alpha _1X_1-\beta _{12}X_2-\gamma _1Y&{}\quad -\beta _{12}X_1&{}\quad -\gamma _1X_1\\ - \beta _{21}X_2 &{}\quad k_2-2\alpha _2X_2-\beta _{21}X_1-\gamma _2Y&{}\quad -\gamma _2X_2 \\ \gamma _1Y&{}\quad -\gamma _2Y &{}\quad \gamma _1X_1-\delta -\gamma _2X_2\\ \end{array} \right] \end{aligned}$$
(A.1)

After substituting \(E_i = (X_1,X_2,Y); i = 0, 1, 2, 3\) into (A.1), we obtain the eigenvalues for each equilibrium point: (A) \(E_0 = (0, 0, 0)\) is always unstable since eigenvalues associated with (A.1) at \(E_0\) are as follows:

$$\begin{aligned} \displaystyle \lambda _1=k_1(>0), \ \lambda _2=k_2(>0) \ \text {and}\ \lambda _3=-\delta (<0). \end{aligned}$$

(B) \(E_1 = (\frac{k_1}{\alpha _1}, 0, 0)\) is locally asymptotically stable if \(k_2<\frac{\beta _{21}k_1}{\alpha _1}\) and \(\frac{\gamma _1k_1}{\alpha _1}<\delta \), thereafter eigenvalues associated with (A.1) at \(E_1\) are given by

$$\begin{aligned}&\displaystyle \lambda _1=-k_1(<0), \ \lambda _2=k_2-\frac{\beta _{21}k_1}{\alpha _1}(<0) \\&\quad \text {and}\ \lambda _3=\frac{\gamma _1k_1}{\alpha _1}-\delta (<0). \end{aligned}$$

(C) \(E_2 = \left( 0,\frac{k_2}{\alpha _2},0\right) \) is locally asymptotically stable if \(k_1<\frac{\beta _{12}k_2}{\alpha _2}\). For this situation the eigenvalues associated with (A.1) at \(E_2\) are given by

$$\begin{aligned}&\displaystyle \lambda _1=-k_2(<0), \ \lambda _2=k_1-\frac{\beta _{12}k_2}{\alpha _2}(<0),\\&\quad \text {and}\ \lambda _3=-\frac{\gamma _2k_2}{\alpha _2}-\delta (<0). \end{aligned}$$

(D) \(E_3 = ({\hat{X}}_1,{\hat{X}}_2,0)\) is locally asymptotically stable if \(\gamma _1{\hat{X}}_1<\delta +\gamma _2{\hat{X}}_2\ \hbox {and}\ A_{1}>0, B_{1}>0\). The eigenvalues associated with (A.1) at \(E_3\) are given by

$$\begin{aligned} \displaystyle \lambda _3=\gamma _1{\hat{X}}_1-\delta -\gamma _2{\hat{X}}_2,(<0, \ \text {if}\ \gamma _1{\hat{X}}_1<\delta +\gamma _2{\hat{X}}_2) \end{aligned}$$

and the other two eigenvalues are the roots of the equation:

$$\begin{aligned} \displaystyle \lambda ^2+A_1\lambda +B_1=0 \end{aligned}$$

where

$$\begin{aligned} \displaystyle A_1= & {} -k_1+2\alpha _1{\hat{X}}_1+\beta _{12}{\hat{X}}_2-k_2+2\alpha _2{\hat{X}}_2+\beta _{21}{\hat{X}}_1 \ \text {and}\\ B_1= & {} (k_1-2\alpha _1{\hat{X}}_1-\beta _{12}{\hat{X}}_2) (k_2-2\alpha _2{\hat{X}}_2\\&-\beta _{21}{\hat{X}}_1)-\beta _{12}\beta _{21}{\hat{X}}_1{\hat{X}}_2. \end{aligned}$$

Then all the roots of \(\lambda ^2+A_1\lambda +B_1=0\) are negative or have negative real parts if \(2(\alpha _1{\hat{X}}_1+\alpha _2{\hat{X}}_2)+\beta _{12}{\hat{X}}_2+\beta _{21}{\hat{X}}_1>k_1+k_2\) and \((k_1-2\alpha _1{\hat{X}}_1-\beta _{12}{\hat{X}}_2) (k_2-2\alpha _2{\hat{X}}_2-\beta _{21}{\hat{X}}_1)>\beta _{12}\beta _{21}{\hat{X}}_1{\hat{X}}_2\). Therefore, \(E_3\) exists and is locally asymptotically stable.

(E) \(E_4 = (\tilde{X_1},0,{\tilde{Y}})\) is locally asymptotically stable if \(\beta _{21}\tilde{X_1}+\gamma _2{\tilde{Y}}>k_2\ \hbox {and}\ A_{2}>0, B_{2}>0\). The eigenvalues associated with (A.1) at \(E_3\) are given by

$$\begin{aligned} \displaystyle \lambda _3= k_2-\beta _{21}\tilde{X_1}-\gamma _2{\tilde{Y}},(<0, \ \text {if}\ \beta _{21}\tilde{X_1}+\gamma _2{\tilde{Y}}>k_2) \end{aligned}$$

and the other two eigenvalues are the roots of the equation:

$$\begin{aligned} \displaystyle \lambda ^2+A_2\lambda +B_2=0 \end{aligned}$$

where

$$\begin{aligned} \displaystyle A_2= & {} 2\alpha _1\tilde{X_1}+\gamma _1{\tilde{Y}}+\delta -k_1-\gamma _1\tilde{X_1} \ \text {and}\\ B_2= & {} k_1\gamma _1\tilde{X_1}+2\alpha _1\tilde{X_1}\delta +\gamma _1\delta {\tilde{Y}}-k_1\delta -2\alpha _1\gamma _1\tilde{X_1}^2. \end{aligned}$$

Then all the roots of \(\lambda ^2+A_2\lambda +B_2=0\) are negative or have negative real parts if \(2\alpha _1\tilde{X_1}+\gamma _1{\tilde{Y}}+\delta >k_1+\gamma _1\tilde{X_1}\) and \(k_1\gamma _1\tilde{X_1}+2\alpha _1\tilde{X_1}\delta +\gamma _1\delta {\tilde{Y}}>k_1\delta +2\alpha _1\gamma _1\tilde{X_1}^2\). Therefore, \(E_4\) exists and is locally asymptotically stable.

(F) Again, the Jacobian matrix of the model (3.2) at its interior equilibrium point \(E^*(X_1^*,X_2^*,Y)\) can be written as follows:

$$\begin{aligned} \displaystyle V(E^*)= \left[ \begin{array}{ccc} -\alpha _1X_1^*&{} \quad -\beta _{12}X_1^*&{}\quad -\gamma _1X_1^*\\ - \beta _{21}X_2^* &{}\quad -\alpha _2X_2^*&{}\quad -\gamma _2X_2^* \\ \gamma _1Y^*&{}\quad -\gamma _2Y^* &{}\quad 0\\ \end{array} \right] \end{aligned}$$

The corresponding characteristic equation is given by

$$\begin{aligned} \displaystyle \lambda ^3+A_{2}\lambda ^2+A_{3}\lambda +A_{4}=0, \end{aligned}$$

where

$$\begin{aligned} A_2= & {} \alpha _1X_1^*+\alpha _2X_2^*(>0),\\ A_3= & {} (\alpha _1\alpha _2-\beta _{12}\beta _{21})X_1^*X_2^*-\gamma _2^2X_2^*Y^*+\gamma _1^2X_1^*Y^*,\\ A_4= & {} \left( -\alpha _1\gamma _2^2+\alpha _2\gamma _1^2-\beta _{12}\gamma _1\gamma _2+\gamma _2\gamma _1\beta _{21}\right) X_1^*X_2^*Y^*. \end{aligned}$$

By Routh Hurwitz’s criterion, all the eigenvalues of \(V(E^*)\) have negative real parts if

$$\begin{aligned}&(i)\quad \alpha _2\gamma _1^2+\gamma _2\gamma _1\beta _{21}>\alpha _1\gamma _2^2+\beta _{12}\gamma _1\gamma _2\\&(ii)\quad A_{2}A_{3}-A_{4}>0. \end{aligned}$$

Therefore, \(E^*\) exists and is locally asymptotically stable if \(\alpha _2\gamma _1^2+\gamma _2\gamma _1\beta _{21}>\alpha _1\gamma _2^2+\beta _{12}\gamma _1\gamma _2\ \hbox {and}\ A_{2}A_{3}-A_{4}>0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Pal, A.K. & Samanta, G.P. Rich dynamics of non-toxic phytoplankton, toxic phytoplankton and zooplankton system with multiple gestation delays. Int. J. Dynam. Control 8, 112–131 (2020). https://doi.org/10.1007/s40435-018-0501-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0501-4

Keywords

Navigation