Skip to main content
Log in

Finite time control scheme for robot manipulators using fast terminal sliding mode control and RBFNN

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Based on terminal sliding mode control, a finite time tracking control scheme, which utilize the advantage of fast terminal sliding mode control and neural network, is presented for robot manipulators. A modified form of sliding surface is considered by introducing two nonlinear terms in the sliding surface. Then a novel robust control scheme is proposed, which shows the strong robustness towards uncertainties and disturbance and as a result the finite time convergence of the tracking error is achieved. The radial basis function neural network is utilized to estimate the nonlinearity of the robot dynamics using update laws. Furthermore the adaptive compensator eliminates the need of knowledge about the upper bound of external disturbances and neural network reconstruction error. The numerical simulation result shows the effectiveness of proposed controller for the case of microbot type robot manipulator in a comparative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Song Z, Yi J, Zhao D, Li X (2005) A computed torque controller for uncertain robotic manipulator systems. Fuzzy Sets Syst 154:208–260

    Article  MathSciNet  MATH  Google Scholar 

  2. Lewis FL, Dawson DM, Abadallah CT (2004) Robot manipulator and control. Taylor & Francis, London

    Google Scholar 

  3. Choi HS (2001) Robust control of robot manipulators with torque saturation using fuzzy logic. Robotica 19(6):631–639

    Article  Google Scholar 

  4. Slotine JJE (1985) The robust control of robot manipulators. Int J Robot Res 4(4):49–64

    Article  Google Scholar 

  5. Slotine JJE, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res 6(3):49–59

    Article  Google Scholar 

  6. Bailey E, Arapostathis A (1987) Simple sliding mode control applied to robot manipulators. Int J Control 25(4):1197–1209

    Article  MATH  Google Scholar 

  7. Capisani LM, Ferrara A (2012) Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans Ind Electron 59(8):3189–3198

    Article  Google Scholar 

  8. Moldoveanu F (2014) Sliding mode controller design for robot manipulators. Bull Transilv Univ Brasov 7(2):97–104

    Google Scholar 

  9. Edwards C, Spurgeon SK (1998) Sliding mode control theory and applications. Taylor & Francis, London

    Book  MATH  Google Scholar 

  10. Lanzon A, Richards RJ (1999) Trajectory/force control of robot manipulators using sliding mode and adaptive control. In: Proceedings of the American control conference (San), vol 3, pp 1940–1944

  11. Tan C, Yu XH, Man ZH (2010) Terminal sliding mode observers for a class of nonlinear systems. Automatica 46(8):1401–1404

    Article  MathSciNet  MATH  Google Scholar 

  12. Tang Y (1998) Terminal sliding mode control for rigid robots. Automatica 34(1):51–56

    Article  MathSciNet  MATH  Google Scholar 

  13. Mu C, Xu W, Sun C (2016) On switching manifold design for terminal sliding mode control. J Frankl Inst 353(7):1553–1572

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao D, Li S, Gao F (2009) A new terminal sliding mode control for robotic manipulators. Int J Control 82(10):1804–1813

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu XH, Man ZH (2002) Fast terminal sliding-mode control design for nonlinear systems. Circuits Syst I Fundam Theory 49(2):261–264

    Article  MathSciNet  MATH  Google Scholar 

  16. Lewis FL, Jagannathan S, Yesilidirek A (1999) Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, London

    Google Scholar 

  17. Panwar V, Kumar N, Sukavanam N, Borm JH (2012) Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl Soft Comput 12:216–227

    Article  Google Scholar 

  18. Kim J, Kumar N, Panwar V, Borm JH, Chai J (2012) Adaptive neural controller for visual serving of robot manipulators with camera-in-hand configuration. J Mech Sci Technol 26(8):2313–2323

    Article  Google Scholar 

  19. Kumar N, Borm JH, Panwar V, Chai J (2012) Tracking control of redundant robot manipulators using RBF neural network and an adaptive bound on disturbances. Int J Precis Eng Manuf 13:1377–1386

    Article  Google Scholar 

  20. Kumar N, Borm JH, Panwar V, Chai J (2014) Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound. Appl Math Comput 231:320–328

    MathSciNet  MATH  Google Scholar 

  21. Wang L, Chai T, Zhai L (2009) Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans Ind Electron 56(9):3296–3304

    Article  Google Scholar 

  22. Mahjoub M, Mnif F, Derbel N, Hamerlain M (2014) Radial-basis-functions neural network sliding mode control for underactuated mechanical systems. Int J Dyn Control 2(4):533–541

    Article  Google Scholar 

  23. Rahmani M, Ghanbari A, Ettefagh MM (2016) Hybrid neural network fractional integral terminal sliding mode control of an Inchworm robot manipulator. Mech Syst Signal Process 80:117–136

    Article  Google Scholar 

  24. Panwar V (2017) Wavelet neural network-based \(H_{\infty }\) trajectory tracking for robot manipulators using fast terminal sliding mode control. Robotica 35(7):1488–1503

    Article  Google Scholar 

  25. Tran M, Kang H (2017) Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system. Neurocomputing 228:213–240

    Article  Google Scholar 

  26. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766

    Article  MathSciNet  MATH  Google Scholar 

  27. Hong Y, Huang J, Xu Y (2001) On an output finite-time stabilization problem. IEEE Trans Autom Control 46(2):305–309

    Article  MathSciNet  MATH  Google Scholar 

  28. Abramowitch M, Stegun IA (1972) Handbook of mathematical fuctions: with formulas, graphs, mathematica tables. Dover, New York

    Google Scholar 

  29. Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964

    Article  MathSciNet  MATH  Google Scholar 

  30. Horn R, Johnson C (2013) Matrix analysis. Cambridge University Press, New York

    MATH  Google Scholar 

  31. Bhat SP, Bernstein DS (1997) Finite-time stability of homogeneous systems. Proc Am Control Conf 21(3):2513–2514

    Article  Google Scholar 

  32. Yang L, Yang J (2011) Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int J Robust Nonlinear Control 21(11):1865–1879

    Article  MathSciNet  MATH  Google Scholar 

  33. Park J, Sandberg JW (1991) Universal approximation using radial-basis function networks. Neural Comput 3:246–257

    Article  Google Scholar 

  34. Feng G, Chak CK (1994) Robot tracking in task space using neural networks. In: Proceedings of the IEEE conference on neural networks, pp 2854–2858

  35. Holcomb T, Morari M (1991) Local training of radial basis function networks: towards solving the hidden unit problem. In: Proceedings of American control conference, pp 2331–2336

  36. Wolovich W (1987) Robotics: basic analysis and design. Rinehart and Winston, St. Louis

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the University Grants Commission(UGC) Sr. No. 2121340972 with Ref No. 22/12/2013 (ii) EU-V, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruchika, Kumar, N. Finite time control scheme for robot manipulators using fast terminal sliding mode control and RBFNN. Int. J. Dynam. Control 7, 758–766 (2019). https://doi.org/10.1007/s40435-018-0477-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0477-0

Keywords

Navigation