Skip to main content
Log in

Robust fast finite-time sliding mode control for industrial robot manipulators

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mizanoor Rahman SM, Ikeura R (2016) Weight-prediction-based predictive optimal position and force controls of a power assist robotic system for object manipulation. IEEE Trans Ind Electron 63(9):5964–5975

    Article  Google Scholar 

  2. Zhao YM, Lin Y, Xi F, Guo S (2015) Calibration-based iterative learning control for path tracking of industrial robots. IEEE Trans Ind Electron 62(5):2921–2929

    Article  Google Scholar 

  3. Shin SY, Kim C (2015) Human-like motion generation and control for humanoid’s dual arm object manipulation. IEEE Trans Ind Electron 62(4):2265–2276

    Article  Google Scholar 

  4. Baghli FZ, El Bakkali L (2015) Design and simulation of robot manipulator position control system based on adaptive fuzzy PID controller. In: Zeghloul S, Laribi MA, Gazeau J-P (eds) Robotics and Mechatronics. Springer, Berlin, pp 243–250

    Google Scholar 

  5. Li Z, Yang K, Bogdan S, Bugong X (2013) On motion optimization of robotic manipulators with strong nonlinear dynamic coupling using support area level set algorithm. Int J Control Autom Syst 11(6):1266–1275

    Article  Google Scholar 

  6. Chiacchio P, Pierrot F, Sciavicco L, Siciliano B (1993) Robust design of independent joint controllers with experimentation on a high-speed parallel robot. IEEE Trans Ind Electron 40(4):393–403

    Article  Google Scholar 

  7. Dombre E, Khalil W (eds) (2007) Modeling, performance analysis and control of robot manipulators. ISTE, Washington

    Google Scholar 

  8. Kreutz K (1989) On manipulator control by exact linearization. IEEE Trans Autom Control 34(7):763–767

    Article  MathSciNet  MATH  Google Scholar 

  9. Karimoddini A, Lin H (2014) Hierarchical hybrid symbolic robot motion planning and control. Asian J Control 17(1):23–33

    Article  MathSciNet  MATH  Google Scholar 

  10. Poignet P, Gautier M (2000) Nonlinear model predictive control of a robot manipulator. In: 6th international workshop on advanced motion control proceedings. IEEE

  11. Craig JJ (1986) Introduction to robotics: mechanics and control. Addison Wesley, Boston

    Google Scholar 

  12. Liu M (1999) Decentralized control of robot manipulators: nonlinear and adaptive approaches. IEEE Trans Autom Control 44(2):357–363

    Article  MathSciNet  MATH  Google Scholar 

  13. Lenarčič J, Husty ML (eds) (1998) Advances in robot kinematics: analysis and control. Springer, Dordrecht

    MATH  Google Scholar 

  14. Capisani LM, Ferrara, A, Magnani, L (2007) Second order sliding mode motion control of rigid robot manipulators. In: 2007 46th IEEE conference on decision and control. IEEE

  15. Ferrara A, Magnani L (2006) Motion control of rigid robot manipulators via first and second order sliding modes. J Intell Robot Syst 48(1):23–36

    Article  Google Scholar 

  16. Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans Ind Electron 58(2):600–610

    Article  Google Scholar 

  17. Ehsan S (2010) Sliding mode control of robot manipulators via intelligent approaches. In: Advanced strategies for robot manipulators. Sciyo

  18. Lian R-J (2011) Intelligent controller for robotic motion control. IEEE Trans Ind Electron 58(11):5220–5230

    Article  Google Scholar 

  19. Plius MP, Yilmaz M, Seven U, Erbatur K (2012) Fuzzy controller scheduling for robotic manipulator force control. In: 2012 12th IEEE international workshop on advanced motion control (AMC). IEEE

  20. Guo C, Simaan MA, Sun Z (2003) Neuro-fuzzy intelligent controller for ship roll motion stabilization. In: Proceedings of the 2003 IEEE international symposium on intelligent control ISIC-03. IEEE

  21. Lee SY, Cho HS (2003) A fuzzy controller for an electro-hydraulic fin actuator using phase plane method. Control Eng Pract 11(6):697–708

    Article  Google Scholar 

  22. Ying H (1998) The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica 34(2):157–167

    Article  MathSciNet  MATH  Google Scholar 

  23. SLOTINE JJ, SASTRY SS (1983) Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. Int J Control 38(2):465–492

    Article  MATH  Google Scholar 

  24. Venkataraman ST, Gulati S (1993) Control of nonlinear systems using terminal sliding modes. J Dyn Syst Meas Control 115(3):554

    Article  MATH  Google Scholar 

  25. Zhihong M, Paplinski AP, Wu HR (1994) A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Control 39(12):2464–2469

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng Y, Yu X, Zhihong M (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng Y, Yu X, Han F (2013) On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6):1715–1722

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen SY, Lin FJ (2011) Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system. IEEE Trans Control Syst Technol 19(3):636–643

    Article  Google Scholar 

  29. Jin M, Lee J, Chang PH, Choi C (2009) Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans Ind Electron 56(9):3593–3601

    Article  Google Scholar 

  30. Asl RM, Hagh YS, Palm R (2017) Robust control by adaptive non-singular terminal sliding mode. Eng Appl Artif Intell 59:205–217. ISSN 0952-1976. https://doi.org/10.1016/j.engappai.2017.01.005, http://www.sciencedirect.com/science/article/pii/S0952197617300052

  31. Yang L, Yang J (2010) Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int J Robust Nonlinear Control 21(16):1865–1879

    Article  MathSciNet  MATH  Google Scholar 

  32. Van M (2018) An enhanced robust fault tolerant control based on an adaptive fuzzy pid-nonsingular fast terminal sliding mode control for uncertain nonlinear systems. IEEE ASME Trans Mechatron. https://doi.org/10.1109/TMECH.2018.2812244

    Google Scholar 

  33. Van M, Mavrovouniotis M, Ge SS (2018) An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2017.2782246

    Google Scholar 

  34. Van M, Ge SS, Ren H (2017) Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans Cybern 47(7):1681–1693. https://doi.org/10.1109/TCYB.2016.2555307

    Article  Google Scholar 

  35. Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao D, Li S, Gao F (2009) A new terminal sliding mode control for robotic manipulators. Int J Control 82(10):1804–1813

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu SS, Chen C, Wu Z (2015) Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans Ind Electron 62(6):3906–3913. https://doi.org/10.1109/TIE.2015.2399397

    Google Scholar 

  38. Yuh J (2000) Design and control of autonomous underwater robots: a survey. Auton Robots 8(1):7–24. https://doi.org/10.1023/A:1008984701078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Gambhire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambhire, S.J., Sri Kanth, K.S., Malvatkar, G.M. et al. Robust fast finite-time sliding mode control for industrial robot manipulators. Int. J. Dynam. Control 7, 607–618 (2019). https://doi.org/10.1007/s40435-018-0476-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0476-1

Keywords

Navigation