Skip to main content
Log in

LMI based robust control design for multi-input–single-output DC/DC converter

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Utilizing linear matrix inequalities (LMI) framework, in this paper a robust control model for multi-input–output DC/DC converter is presented based on its analytical study. This converter is composed of two conventional converters, buck-boost and boost, which can supply the load when one of the inputs fails to do so. Employing the LMI method makes it possible to modelize the nonlinearities and uncertainties as a convex polytope. So, by considering LMI constraints, a certain rejection level of noise and an area for pole location are guaranteed robustly. Utilizing this method along with standard optimization algorithms can set the multi objective robust controller automatically. The simulation results are derived by MATLAB for a low efficiency implementable state-feedback and are compared with a conventional PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khaligh A, Rahimi AM, Emadi A (2008) Modified pulse-adjustment technique to control dc/dc converters driving variable constant-power loads. IEEE Trans Ind Electron 55(3):1133–1146

    Article  Google Scholar 

  2. Li W, He X (2011) Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans Ind Electron 58(4):1239–1250

    Article  Google Scholar 

  3. Chen Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24(8):1859–1875

    Article  Google Scholar 

  4. Mukherjee N, Strickland D (2016) Control of cascaded DC–DC converter-based hybrid battery energy storage systems—part II: Lyapunov approach. IEEE Trans Ind Electron 63(5):3050–3059

    Article  Google Scholar 

  5. Akter MP, Mekhilef S, Tan NML, Akagi H (2016) Modified model predictive control of a bidirectional AC–DC converter based on Lyapunov function for energy storage systems. IEEE Trans Ind Electron 63(2):704–715

    Article  Google Scholar 

  6. Spinetti-Rivera M, Olm JM, Biel D, Fossas E (2013) Bifurcation analysis of a Lyapunov-based controlled boost converter. Commun Nonlinear Sci Numer Simul 18(11):3108–3125

    Article  MathSciNet  MATH  Google Scholar 

  7. Cortes D, Alvarez J, Álvarez J, Fradkov A (2004) Tracking control of the boost converter. IEE Proc Control Theory Appl 151(2):218–224

    Article  Google Scholar 

  8. Shen L, Lu DDC, Li C (2015) Adaptive sliding mode control method for DC–DC converters. IET Power Electron 8(9):1723–1732

    Article  Google Scholar 

  9. Zeng J, Zhang Z, Qiao W (2014) An interconnection and damping assignment passivity-based controller for a DC–DC boost converter with a constant power load. IEEE Trans Ind Appl 50(4):2314–2322

    Article  Google Scholar 

  10. Chen Q, Ren X, Oliver JA (2012) Identifier-based adaptive neural dynamic surface control for uncertain DC–DC buck converter system with input constraint. Commun Nonlinear Sci Numer Simul 17(4):1871–1883

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernandez W, de Vicente J, Sergiyenko O (2010) H∞ loop-shaping control of a buck-boost converter. In: 2010 IEEE international conference on industrial technology (ICIT). IEEE, pp 1319–1323

  12. Hernandez W (2008) H integral control of a buck-boost DC–DC converter. In: 3rd International symposium on communications, control and signal processing, 2008 (ISCCSP 2008). IEEE, pp 1425–1430

  13. Feki M, El Aroudi A, Robert BGM, Martínez-Salamero L (2011) Optimizing the dynamics of a two-cell DC–DC buck converter by time delayed feedback control. Commun Nonlinear Sci Numer Simul 16(11):4349–4364

    Article  MathSciNet  MATH  Google Scholar 

  14. Basim AM, Kiran P, Abraham RJ (2013) QFT based robust controller for DC–DC boost converter. In: 2013 International conference on circuits, controls and communications (CCUBE). IEEE, pp 1–6

  15. Altowati A, Zenger K, Suntiof T (2008) Analysis and design of QFT-based robust control of a boost power converter. pp 537–542

  16. Leyva R, Inglés JV, Olalla C (2012) LMI control of boost-PWM converters: an implementation approach. In: 2012 IEEE international symposium on industrial electronics (ISIE). IEEE, pp 377–382

  17. Inglés JV, Garcés P, Leyva R (2012) Robust LMI control of a buck-boost converter with low ripple propagation. In: 2012 20th Mediterranean conference on control & automation (MED). IEEE, pp 1272–1277

  18. Ghainet P, Nemirovski A, Laub AJ, Chilali M (1995) LMI control toolbox-for use with matlab. The Math Works Inc

  19. Banaei MR, Ardi H, Alizadeh R, Farakhor A (2014) Non-isolated multi-input–single-output DC/DC converter for photovoltaic power generation systems. IET Power Electron 7(11):2806–2816

    Article  Google Scholar 

  20. Olalla C, Leyva R, El Aroudi A, Garces P, Queinnec I (2010) LMI robust control design for boost PWM converters. IET Power Electron 3(1):75–85

    Article  Google Scholar 

  21. Montagner VF, Oliveira RCLF, Leite VJ, Peres PLD (2005) LMI approach for ℋ∞ linear parameter-varying state feedback control. IEE Proc Control Theory Appl 152(2):195–201

    Article  Google Scholar 

  22. Bakka T, Karimi HR (2012) Robust output feedback H control synthesis with pole placement for offshore wind turbine system: an LMI approach. In: 2012 IEEE international conference on control applications (CCA). IEEE, pp 1467–1472

  23. Xu S, Lam J (2004) Positive real control for uncertain singular time-delay systems via output feedback controllers. Eur J Control 10(4):293–302

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, M., Safari, A. LMI based robust control design for multi-input–single-output DC/DC converter. Int. J. Dynam. Control 7, 379–387 (2019). https://doi.org/10.1007/s40435-018-0449-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0449-4

Keywords

Navigation