Skip to main content
Log in

Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a novel adaptive interval type-2 fuzzy active sliding mode control (AIT2FASMC) approach is proposed for synchronization of fractional-order hyper-chaotic systems. The synchronization is achieved in front of uncertainties facing the fuzzy logic controller (FLC) in fractional–order hyper-chaotic systems such as uncertainties in control outputs, uncertainties in inputs to the fuzzy logic controller, and linguistic uncertainties. Two fractional-order hyper-chaotic systems can be synchronized based on Lyapunov stability theorem by using direct AIT2FASMC approach. Also, the proposed method reduces the chattering phenomena in the control signal, significantly. This novel fractional-order sliding mode controller is proposed for robust stabilization/synchronization problem of a class of fractional-order hyper-chaotic systems in the presence of external noise. Type-2 fuzzy active sliding mode control \(\left( {FASMC}\right) \) have the ability to overcome the limitations of type-1 FASMC when system is corrupted by high levels of uncertainty. Finally, the proposed approach is applied to two identical and non-identical fractional-order hyper-chaotic systems when the slave system is perturbed by external noise. Simulation results show applicability and feasibility of the proposed finite-time control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ross B (1974) Fractional calculus and its applications. Lecture Notes Math. Springer, Berlin

    Google Scholar 

  2. Ross B (1975) Fractional calculus and its applications. Lecture Notes Math 457:37–79

    Article  Google Scholar 

  3. Petras I (2008) A note on the fractional-order Chua’s system. Chaos Solitons Fract 38:140–147

    Article  Google Scholar 

  4. Lu JG, Chen G (2006) A note on the fractional-order Chen system. Chaos Solitons Fract 27:685–688

    Article  MATH  Google Scholar 

  5. Yanchuk S, Maistrenko Y, Mosekilde E (2003) Synchronization of time-continuous chaotic oscillators. Chaos: an interdisciplinary. J Nonlinear Sci 13:388–400

    MATH  Google Scholar 

  6. Baht SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38:751–766

    Article  MathSciNet  Google Scholar 

  7. Orlov Y (2005) Finite-time stability and robust control synthesis of uncertain switched systems. SIAM J Control Optim 43:1253–1271

    Article  MathSciNet  MATH  Google Scholar 

  8. Hugues-Salas O, Banks SP (2008) Optimal control of chaos in nonlinear driven oscillators via linear time-varying approximations. Int J Bifurcation Chaos 18:3355–3374

    Article  MathSciNet  MATH  Google Scholar 

  9. Hua C, Guan X (2004) Adaptive control for chaotic systems. Chaos Solitons Fract 22:55–60

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen B, Liu X, Tong S (2007) Adaptive fuzzy approach to control unified chaotic systems. Chaos Solitons Fract 34:1180–1187

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang JF, Hung ML, Yang YS, Liao TL, Yan JJ (2008) Controlling chaos of the family of Rössler systems using sliding mode control. Chaos Solitons Fract 37:609–622

    Article  MATH  Google Scholar 

  12. Mohadeszadeh M, Delavari H (2015) Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control. Int J Dynam Control. doi:10.1007/s40435-015-0177-y

  13. Nagarale RM, Patre BM (2014) Exponential function based fuzzy sliding mode control of uncertain nonlinear systems. Int J Dynam Control. doi:10.1007/s40435-014-0117-2

  14. Castillo O, Melin P (2008) Intelligent systems with interval type-2 fuzzy logic. Inform Control 4:771–784

    Google Scholar 

  15. Li C, Yi J, Zhao D (2009) Design of interval type-2 fuzzy logic system using sampled data and prior knowledge. ICIC Express Lett 3:695–700

    Google Scholar 

  16. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inform Sci 9:43–80

    Article  MathSciNet  MATH  Google Scholar 

  17. Castillo O, Melin P, Tsvetkov RT, Atanassov K (2015) Short remark on fuzzy sets, interval type-2 fuzzy sets, general type-2 fuzzy sets and intuitionistic fuzzy sets. Intell Syst 322:183–190

    Google Scholar 

  18. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Inform Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  19. Gomide Fernando AC (2003) Uncertain rule-based fuzzy logic systems introduction and new directions. Fuzzy Sets Syst 133:133–135

    Article  Google Scholar 

  20. Wagenknecht M, Hartmann K (1988) Application of fuzzy sets of type-2 to the solution of fuzzy equations systems. Fuzzy Sets Syst 25:183–190

    Article  MathSciNet  MATH  Google Scholar 

  21. Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2009) A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inform Sci 179:2175–2193

    Article  MATH  Google Scholar 

  22. Dereli T, Baykasoglu A, Altun K, Durmusoglu A, Turksen IB (2011) Industrial applications of type-2 fuzzy sets and systems. Comput Ind 62:125–137

    Article  Google Scholar 

  23. Castillo O, Aguilar LT, Cazarez-Castro NR, Cardenas S (2008) Systematic design of a stable type-2 fuzzy logic controller. Appl Soft Comput 8:1274–1279

    Article  Google Scholar 

  24. Hagras H (2004) Hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. Fuzzy Syst 12:524–539

    Article  Google Scholar 

  25. Hsiao M, Li THS, Lee JZ, Chao CH, Tsai SH (2008) Design of interval type-2 fuzzy sliding-mode controller. Inform Sci 178:1686–1716

    Article  MathSciNet  MATH  Google Scholar 

  26. Mendoza O, Melin P, Castillo O (2009) Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl Soft Comput 9:1377–1387

    Article  Google Scholar 

  27. Deng WH, Li CP (2005) Chaos synchronization of the fractional Lü system. Phys A 353:61–72

    Article  Google Scholar 

  28. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurcation Chaos 9:1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  29. Li CP, Chen G (2003) A note on hopf bifurcation in Chen’s system. Int J Bifurcation Chaos 6:1609–1615

    Article  MathSciNet  MATH  Google Scholar 

  30. Deng WH, Li CP (2005) Synchronization of chaotic fractional chen system. J Phys Soc Jpn 74:1645–1648

    Article  MATH  Google Scholar 

  31. Utkin VI (1977) Variable structure systems with sliding mode. IEEE Trans Autom Control 22:212–222

    Article  MathSciNet  MATH  Google Scholar 

  32. Slotine JJE (1984) Sliding controller design for non-linear systems. Int J Control 40:421–434

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu X, Kaynak O (2009) Sliding-mode control with soft computing. IEEE Trans Ind Electron 56:3275–3285

    Article  Google Scholar 

  34. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  35. Uchaikin V (2013) Fractional derivatives for physicists and engineers. Nonlinear physical science. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Ortigueira M (2011) Fractional calculus for scientists and engineers. Lecture notes in electrical engineering. Springer, Netherlands

    Book  MATH  Google Scholar 

  37. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science Inc, New York

    MATH  Google Scholar 

  38. Baleanu D, Machado JAT, Luo ACJ (2012) Fractional dynamics and control. Springer, New York

    Book  Google Scholar 

  39. Caponetto R et al (2010) Fractional-order systems: modeling and control applications. World Scientific, Singapore

    Book  Google Scholar 

  40. Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional Adams method. Numer Algorithms 36:31–52

    Article  MathSciNet  MATH  Google Scholar 

  41. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans ASME 64:759–768

    Google Scholar 

  42. Mendel JM (2004) Computing derivatives in interval type-2 fuzzy logic systems. Fuzzy Syst 12:84–98

    Article  Google Scholar 

  43. Monje A, Chen YQ, Vinagre BM et al (2010) Fractional-order systems and controls. Springer, New York

    Book  MATH  Google Scholar 

  44. Ortigueira M, Machado JA (2015) What is a fractional derivative? J Comput Phys 293:4–13

    Article  MathSciNet  MATH  Google Scholar 

  45. Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA (2014) Lyapunov functions for fractional-order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957

    Article  MathSciNet  Google Scholar 

  46. Matouka AE, Elsadany AA (2014) Achieving synchronization between the fractional-order hyper-chaotic novel and chen systems via a new nonlinear control technique. Appl Math Comput 29:30–35

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Delavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohadeszadeh, M., Delavari, H. Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller. Int. J. Dynam. Control 5, 135–144 (2017). https://doi.org/10.1007/s40435-015-0207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0207-9

Keywords

Navigation