Skip to main content

Advertisement

Log in

Modeling and assessment of the thermo-electrical performance of a photovoltaic-thermal (PVT) system using different nanofluids

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The proposed study aims to test the thermo-electrical, and exergy efficiency of a hybrid PVT collector cooled by pure water, copper (Cu)/water, and aluminum-oxide (Al2O3)/water nanofluids, respectively. A model is mathematically constructed using the energy-balance equation across all the layers of the hybrid PVT collector. For the validation of the proposed mathematical model, the outcomes of the proposed numerical model are compared with the experimental data of the literature. The impact of volume fraction (vol%) and mass flow rate (m) of the nanofluids on the PVT outcomes has been analyzed and demonstrated. The study displays a better PVT performance with Cu/water nanofluid compared to Al2O3/water nanofluid and pure water. Merely a 2% volume concentration of Cu nanoparticles results in a 4.98% and 5.23% improvement in the average electrical and thermal efficiencies, respectively. At a mass flow rate of 0.03 kg/s, the thermo-electrical efficiency of the PVT with Cu/water nanofluid improve by 4.45% and 2.9%, respectively, concerning the pure water. Further, the impact of several tubes and their diameter is also investigated on the thermo-electrical efficiencies of the hybrid PVT collector. The tube diameter has not any substantial effect on the performance, whereas the thermo-electrical performance significantly enhanced with the rise in the number of tubes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kasaeian A, Fatemeh R, Yan W-M (2019) Osmotic desalination by solar energy: a critical review. Renew Energy 134:1473–1490

    Article  Google Scholar 

  2. Kasaeian A, Rahdan P, Vaziri MAR, Yan W-M (2019) Optimal design and technical analysis of a grid-connected hybrid photovoltaic/diesel/biogas under different economic conditions: a case study. Energy Convers Manag 198:111810

    Article  Google Scholar 

  3. Diwania S, Siddiqui AS, Agrawal S, Kumar R (2020) Performance assessment of PVT-air collector with V-Groove absorber: a theoretical and experimental analysis. Heat Mass Transf. https://doi.org/10.1007/s00231-020-02980-0

    Article  Google Scholar 

  4. Shahsavar A, Ameri M (2010) Experimental investigation and modeling of a direct-coupled PV/T air collector. Sol Energy 84:1938–1958

    Article  Google Scholar 

  5. Huang B, Lin T, Hung W, Sun F (2001) Performance evaluation of solar photovoltaic/ thermal systems. Sol Energy 70:443–448

    Article  Google Scholar 

  6. Mojumder JC, Chong WT, Ong HC, Leong KY, Abdullah-Al-Mamoon. (2016) An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build 130:272–285

    Article  Google Scholar 

  7. Kabeel AE, Hamed MH, Omara ZM, Kandeal AW (2018) Influence of fin height on the performance of a glazed and bladed entrance single-pass solar air heater. Sol Energy 162:410–419

    Article  Google Scholar 

  8. Kamthania D, Nayak S, Tiwari GN (2011) Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating. Energy Build 43:2274–2281

    Article  Google Scholar 

  9. Diwania S, Agrawal S, Siddiqui AS, Singh S (2019) Photovoltaic-thermal (PV/T) technology: a comprehensive review on application and its advancement. Int J Energy Environ Eng 11:33–54

    Article  Google Scholar 

  10. Brideau SA, Collins MR (2012) Experimental model validation of a hybrid PV/thermal air-based collector with impinging jets. Energy Procedia 30:44–54

    Article  Google Scholar 

  11. Sopian K, Yigit KS, Liu HT et al (2000) Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems. Energy Convers Manag 41(4):353–365

    Article  Google Scholar 

  12. Herrando M, Markides CN, Hellgardt K (2014) A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance. Appl Energy 122:288–309

    Article  Google Scholar 

  13. Prakash J (1994) Transient analysis of a photovoltaic–thermal solar collector for co-generation of electricity and hot air/water. Energy Convers Manage 35(11):967–972

    Article  Google Scholar 

  14. Bergene T, Lovvik OM (1995) Model calculations on a flat plate solar heat collector with integrated solar cells. Sol Energy 55(6):453–462

    Article  Google Scholar 

  15. Guarracino I, Mellor A, Ekins-Daukes NJ, Markides CN (2016) Dynamic coupled thermal and electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors. Appl Therm Eng 101:778–795

    Article  Google Scholar 

  16. Akhavan-Behabadi MA, Hekmatipour F, Mirhabibi SM et al (2015) Experimental investigation of thermal–rheological properties and heat transfer behavior of the heat transfer oil–copper oxide (HTO–CuO) nanofluid in smooth tubes. Exp Therm Fluid Sci 68:681–688

    Article  Google Scholar 

  17. Javadi FS, Saidur R, Kamalisarvestani M (2013) Investigating performance improvement of solar collectors by using nanofluids. Renew Sustain Energy Rev 28:232–245

    Article  Google Scholar 

  18. Sardarabadi M, Passandideh-Fard M, Heris SZ (2014) Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 66:264–272

    Article  Google Scholar 

  19. Yazdanifard F, Ameri M, Ebrahimania-Bajestan E (2017) Performance of nanofluid-based photovoltaic/thermal systems. RSER 76:323–352

    Google Scholar 

  20. Sardarabadi M, Passandideh-Fard M (2016) Experimental and numerical study of metal-oxides/ water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater Sol Cells 157:533–542

    Article  Google Scholar 

  21. Khanjari Y, Pourfayaz F, Kasaeian A (2016) Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers Manag 122:263–278

    Article  Google Scholar 

  22. Rejeb O, Sardarabadi M, Ménézo C, Passandideh-Fard M, Dhaou MH, Jemni A (2016) Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers Manag 110:367–377

    Article  Google Scholar 

  23. Naghdbishi A, Yazdi ME, Akbari G (2020) Experimental investigation of the effect of multi-wall carbon nanotube-water glycol based nanofluids on a PVT system integrated with PCM covered collector. Appl Therm Eng 178:115556

    Article  Google Scholar 

  24. Xu Z, Kleinstreuer C (2014) Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers Manag 87:504–512

    Article  Google Scholar 

  25. Xu Z, Kleinstreuer C (2014) Computational analysis of nanofluid cooling of high concentration photovoltaic cells. J Therm Sci Eng Appl 6:031009

    Article  Google Scholar 

  26. Fayaz H, Nasrin R, Rahim NA, Hasanuzzaman M (2018) Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Sol Energy 169:217–230

    Article  Google Scholar 

  27. Aberoumand S, Ghamari S, Shabani B (2018) Energy and exergy analysis of a photovoltaic/thermal system using nanofluids: an experimental study. Sol Energy 165:167–177

    Article  Google Scholar 

  28. Hissouf M, Feddaoui M, Nazim C, A. (2020) Numerical study of a covered Photovoltaic-Thermal (PVT) enhancement using nanofluids. Sol Energy 199:115–127

    Article  Google Scholar 

  29. Tang LQ, Zhu QZ (2014) Performance study of flowing-over PV/T system with different working fluid. Appl Mech Mater 488:1173–1176

    Article  Google Scholar 

  30. Cui Y, Zhu Q (2012) Study of photovoltaic/thermal systems with MgO–water nanofluids flowing over silicon solar cells. In: 2012 Asia-Pacific power and energy engineering conference. IEEE, pp 1–4

  31. Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M (2018) Water/MWCNT nanofluid based cooling system of PVT: experimental and numerical research. Renew Energy 121:286–300

    Article  Google Scholar 

  32. Chow T (2003) Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Sol Energy 75:143–152

    Article  Google Scholar 

  33. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  34. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J 11:151–170

    Article  Google Scholar 

  35. Jia Y, Ran F, Zhu C, Fang G (2020) Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Sol Energy 196:625–636

    Article  Google Scholar 

  36. Rajaee F, Rad MAV, Kasaeian A, Mahian O, Yan WM (2020) Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material for heat sink. Energy Convers Manag 212:112780

    Article  Google Scholar 

  37. Bhattarai S, Oh JH, Euh SH, Krishna Kafle G, Hyun Kim D (2012) Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Sol Energy Mater Sol Cells 103:184–193

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Haroon Ashfaq, Associate Professor, Electrical Engineering Department, Jamia Millia Islamia, New Delhi, for his kind support in the research work. The authors also thank the Department of Electrical and Electronics Engineering Krishna Institute of Engineering and Technology Ghaziabad for providing the necessary laboratory facilities for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Jader Barbosa Jr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been selected for a  Topical Issue of this journal on Nanoparticles and  Passive-Enhancement Methods in Energy.

Appendix

Appendix

The heat transfer coefficients (HTCs) used in Eqs. (13)

$$H_{{{\text{pv}} \cdot {\text{Ab}}}} = \frac{{\lambda_{{{\text{ad}}}} }}{{\delta_{{{\text{ad}}}} }}\left( {1 - \frac{{D_{{{\text{out}}}} }}{W}} \right)$$
$$H_{{{\text{pv}} \cdot {\text{t}}}} = \frac{{\delta_{{{\text{pv}}}} }}{{\frac{{W^{2} }}{{8\lambda_{{{\text{pv}}}} }} + \frac{{\delta_{{{\text{ad}}}} }}{{\lambda_{{{\text{ad}}}} }} \cdot \frac{{\delta_{{{\text{pv}}}} W}}{{D_{{{\text{out}}}} }}}}$$

where δ, λ are the depth of the particular layer and thermal conductivity, respectively. Dout is the outer tube diameter.

The heat transfer coefficients (HTCs) used in Eq. (4)

$$H_{{{\text{Ab}} \cdot {\text{t}}}} = \frac{{8\lambda_{{{\text{Ab}}}} }}{{W - D_{{{\text{out}}}} }} \cdot \frac{{\delta_{{{\text{Ab}}}} }}{W}$$
$$H_{{{\text{Ab}} \cdot {\text{ins}}}} = \frac{1}{{\frac{{\delta_{{{\text{Ab}}}} }}{{\lambda_{{{\text{Ab}}}} }} + \frac{{\delta_{{{\text{ins}}}} }}{{\lambda_{{{\text{ins}}}} }}}}$$

The heat transfer coefficients (HTCs) used in Eq. (5)

$$H_{{{\text{t}} \cdot {\text{ins}}}} = \frac{{2\lambda_{{{\text{ins}}}} }}{{\delta_{{{\text{ins}}}} }}\left( {\frac{\Pi }{2} + 1} \right)\frac{{D_{{{\text{out}}}} }}{W}$$
$$H_{{{\text{t}} \cdot {\text{nf}}}} = \frac{1}{{\frac{W}{{h_{{{\text{nf}}}} \Pi D_{{{\text{in}}}} }} + \frac{W}{{\lambda_{{{\text{ad}}}} }}}}$$

where hnf is the convective HTC represents the forced flow of nanofluid circulating in the tubes.

$$h_{{{\text{nf}}}} = \frac{{{\text{Nu}}_{{{\text{nf}}}} \lambda_{{{\text{nf}}}} }}{{D_{{{\text{in}}}} }}$$

The heat transfer coefficients (HTCs) used in Eq. (6)

$$H_{{{\text{ins}} \cdot {\text{air}}}} = \frac{1}{{\frac{{\delta_{{{\text{ins}}}} }}{{2\lambda_{{{\text{ins}}}} }} + \frac{1}{{h_{{{\text{g}}\cdot{\text{air}}}} }}}}$$

The constant used in Eq. (8)

$$C = \frac{{H_{{{\text{t}} \cdot {\text{nf}}}} \cdot W_{{\text{d}}} }}{{m_{{{\text{nf}}}} \cdot c_{p} }}$$

The constant A and B used to simply Eq. (10)

$$A = e^{{ - CL_{{\text{c}}} }}$$
$$B = \frac{1 - A}{{C \cdot L_{{\text{c}}} }}$$

The Pe, Re and Pr denotes the Peclet, Reynold and Prandtl numbers

$${\text{Pe}}_{{{\text{nf}}}} = \frac{{\rho_{{{\text{nf}}}} V_{{\text{f}}} d_{{{\text{nf}}}} c_{{{\text{pnf}}}} }}{{\lambda_{{{\text{nf}}}} }}$$
$${\text{Re}}_{{{\text{nf}}}} = \frac{{\rho_{{{\text{nf}}}} VD}}{{\upsilon_{{{\text{nf}}}} }} = \frac{4m}{{\Pi \upsilon_{{{\text{nf}}}} D}}$$
$$\Pr_{{{\text{nf}}}} = \frac{{\upsilon_{{{\text{nf}}}} c_{{p{\text{nf}}}} }}{{\lambda_{{{\text{nf}}}} }}$$

The thermophysical properties of base fluid used in mathematical modeling

$$\rho_{{{\text{water}}}} = - 0.03XT^{2} + 1.505XT + 816.781$$
$$c_{{p,{\text{water}}}} = - 0.0000463XT^{3} + 0.0552XT^{2} - 20.86XT + 6719.637$$
$$\upsilon_{{{\text{water}}}} = 0.00002414X10^{{\frac{247.8}{{T - 140}}}}$$
$$\lambda_{{{\text{water}}}} = - 0.000007843XT^{2} + 0.0062XT - 0.54$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwania, S., Siddiqui, A.S., Agrawal, S. et al. Modeling and assessment of the thermo-electrical performance of a photovoltaic-thermal (PVT) system using different nanofluids. J Braz. Soc. Mech. Sci. Eng. 43, 190 (2021). https://doi.org/10.1007/s40430-021-02909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02909-6

Keywords

Navigation