Skip to main content
Log in

Dielectrophoretic microfluidic device for separation of red blood cells and platelets: a model-based study

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The paper proposes a dielectrophoresis microfluidic chip for particle separation, which uses dielectric properties to perform size-based fractionation of red blood cells and platelets. Based on the control variables, the distribution of the electric field in the chip and the trajectory of the particles in the microfluidic channel are calculated using COMSOL Multiphysics under different electrode shapes, voltages and chip exit structures. Both red blood cells and platelets respond to negative dielectrophoresis at an alternating current signal with a frequency of 100 kHz. The larger red blood cells are subjected to a stronger dielectrophoretic force than the platelets and are biased toward the right outlet, and the platelets flow out from the left outlet under the combined action of fluid force and dielectrophoretic force to achieve the purpose of separation. On this basis, through quantitative comparison and analysis, a more optimized microfluidic chip capable of effectively separating particles is finally selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Stroncek DF, Rebulla P (2007) Platelet transfusions. The Lancet 370(9585):427–438

    Article  Google Scholar 

  2. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52

    Article  Google Scholar 

  3. Han W, Chen X, Hu Z, Yang K (2018) Three-dimensional numerical simulation of a droplet generation in a double T-junction microchannel. J Micro/Nanolithography MEMS MOEMS 17(2):025502

    Article  Google Scholar 

  4. Friedman SL, Roll FJ (1987) Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem 161(1):207–218

    Article  Google Scholar 

  5. Raddatz MSL et al (2008) Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew Chem 120(28):5268–5271

    Article  Google Scholar 

  6. Schriebl K et al (2012) Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A 18(9–10):899–909

    Article  Google Scholar 

  7. Becker FF et al (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci 92(3):860–864

    Article  Google Scholar 

  8. Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23(16):2569–2582

    Article  Google Scholar 

  9. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  10. Das D, Biswas K, Das S (2014) A microfluidic device for continuous manipulation of biological cells using dielectrophoresis. Med Eng Phys 36(6):726–731

    Article  Google Scholar 

  11. Piacentini N et al (2011) Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3):034122

    Article  MathSciNet  Google Scholar 

  12. Zheng S, Liu J-Q, Tai Y-C (2008) Streamline-based microfluidic devices for erythrocytes and leukocytes separation. J Microelectromechanical Syst 17(4):1029–1038

    Article  Google Scholar 

  13. Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103(40):14779–14784

    Article  Google Scholar 

  14. Ali H, Park CW (2016) Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device. Korea Aust Rheol J 28(4):327–339

    Article  Google Scholar 

  15. Mathew B et al (2015) Modeling the trajectory of microparticles subjected to dielectrophoresis in a microfluidic device for field flow fractionation. Chem Eng Sci 138:266–280

    Article  Google Scholar 

  16. Mathew B et al (2016) Path of microparticles in a microfluidic device employing dielectrophoresis for hyperlayer field-flow fractionation. Microsyst Technol 22(7):1721–1732

    Article  Google Scholar 

  17. Mathew B et al (2016) Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation. J Sep Sci 39(15):3028–3036

    Article  Google Scholar 

  18. Tajik P et al (2019) Simple, cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.9b00771

    Article  Google Scholar 

  19. Cetin B, Öner SD, Baranoğlu B (2017) Modeling of dielectrophoretic particle motion: point particle versus finite-sized particle. Electrophoresis 38(11):1407–1418

    Article  Google Scholar 

  20. Patki S et al (2012) Wireless EEG system with real time impedance monitoring and active electrodes. In: 2012 IEEE biomedical circuits and systems conference (BioCAS). IEEE

  21. Phol HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric field. Cambridge University Press, Cambridge

    Google Scholar 

  22. Huang Y, Holzel R, Pethig R, Wang X-B (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499

    Article  Google Scholar 

  23. Buyukkockak S, Ozer MB, Cetin B (2017) Numerical modeling of ultrasonic particle manipulation for microfluidic applications. Microfluid Nanofluid 17:1025–1037

    Article  Google Scholar 

  24. Srivastava SK et al (2008) Dielectrophoretic characterization of erythrocytes: positive ABO blood types. Electrophoresis 29(24):5033–5046

    Article  Google Scholar 

  25. Kang Y et al (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices 10(2):243–249

    Article  Google Scholar 

  26. Chen KP et al (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30(9):1441–1448

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by LiaoNing Revitalization Talents Program (XLYC1907122), Liaoning Natural Science Foundation (2019-MS-169). We sincerely thank Prof. Chong Liu for his kind guidance.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed and performed the numerical simulations. The manuscript was written through contributions from all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Xueye Chen.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Technical Editor: Erick de Moraes Franklin, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, X. Dielectrophoretic microfluidic device for separation of red blood cells and platelets: a model-based study. J Braz. Soc. Mech. Sci. Eng. 42, 89 (2020). https://doi.org/10.1007/s40430-020-2169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2169-x

Keywords

Navigation