Skip to main content
Log in

Experimental analysis of fluid displacement and viscous fingering instability in fractured porous medium: effect of injection rate

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Viscous fingering instability has been studied empirically by miscible flow displacement. Despite numerous experimental studies, there is little information regarding the fractured porous medium. The tests have been conducted in a rectangular porous medium, and the fluid was driven in the longitudinal direction. The generated fingering patterns are demonstrated and discussed based on injection rate and fracture orientation. Three porous models with 0°, 45° and 90° fractures were used in order to study the effect of fracture orientation. Quantitative parameters of fingering instability, such as sweep efficiency, headway position, and breakthrough time, have been measured by image processing techniques using MATLAB. It is shown that by increasing the injection rate, the size of the finger patterns slightly increased. Moreover, the effects of fractures on displacement behaviors are shown and explained. According to the results, zero degree fracture altered the rate of sweep efficiency and tip position the more significantly than other fractures. Furthermore, it was observed that by changing the direction of fractures from parallel to perpendicular to the flow direction, the breakthrough time increased consequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saffman PG, Taylor GI (1958) The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc R Soc Lond Ser A Math Phys Sci 245(1242):312–329. https://doi.org/10.1098/rspa.1958.0085

    Article  MathSciNet  MATH  Google Scholar 

  2. Homsy GM (1987) Viscous fingering in porous media. Annu Rev Fluid Mech 19(1):271–311. https://doi.org/10.1146/annurev.fl.19.010187.001415

    Article  Google Scholar 

  3. Maaref S, Rokhforouz M, Ayatollahi S (2017) Numerical investigation of two phase flow in micromodel porous media: effects of wettability, heterogeneity, and viscosity. Can J Chem Eng 95(6):1213–1223

    Article  Google Scholar 

  4. Ponce F, Alvarado V, Carvalho MS (2017) Water-alternating-macroemulsion reservoir simulation through capillary number-dependent modeling. J Braz Soc Mech Sci Eng 39(10):4135–4145. https://doi.org/10.1007/s40430-017-0885-7

    Article  Google Scholar 

  5. Wijeratne DIEN, Halvorsen BM (2015) Computational study of fingering phenomenon in heavy oil reservoir with water drive. Fuel 158:306–314. https://doi.org/10.1016/j.fuel.2015.05.052

    Article  Google Scholar 

  6. Singh M, Tangirala SK, Chaudhuri A (2020) Potential of CO2 based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration. Geomech Geophys Geo-Energy Geo-Resour 6(1):16. https://doi.org/10.1007/s40948-019-00139-8

    Article  Google Scholar 

  7. Nijjer JS, Hewitt DR, Neufeld JA (2018) The dynamics of miscible viscous fingering from onset to shutdown. J Fluid Mech. https://doi.org/10.1017/jfm.2017.829

    Article  MathSciNet  MATH  Google Scholar 

  8. ul Islam T, Gandhi PS (2017) Viscous fingering in multiport Hele Shaw cell for controlled shaping of fluids. Sci Rep 7(1):16602. https://doi.org/10.1038/s41598-017-16830-3

    Article  Google Scholar 

  9. Hosseinalipoor SM, Nemati A, Zare Vamerzani B, Saffari H (2019) Experimental study of finger behavior due to miscible viscous and gravity contrast in a porous model. Energy Sources Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2019.1607943

    Article  Google Scholar 

  10. Benham AL, Olson RW (1963) A model study of viscous fingering. Soc Pet Eng J 3(02):138–144

    Article  Google Scholar 

  11. Kopf-Sill AR, Homsy GM (1988) Nonlinear unstable viscous fingers in Hele-Shaw flows. I. Experiments. Phys Fluids 31(2):242–249. https://doi.org/10.1063/1.866854

    Article  Google Scholar 

  12. Malhotra S, Sharma MM, Lehman ER (2015) Experimental study of the growth of mixing zone in miscible viscous fingering. Phys Fluids 27(1):14105

    Article  Google Scholar 

  13. Saffman PG (1986) Viscous fingering in Hele-Shaw cells. J Fluid Mech 173:73–94. https://doi.org/10.1017/S0022112086001088

    Article  MathSciNet  MATH  Google Scholar 

  14. Nield DA, Kuznetsov AV (2006) The onset of convection in a bidisperse porous medium. Int J Heat Mass Transf 49(17):3068–3074. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.008

    Article  MATH  Google Scholar 

  15. Jiao C, Maxworthy T (2007) An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele Shaw cell. Exp Fluids 44(5):781–794. https://doi.org/10.1007/s00348-007-0434-8

    Article  Google Scholar 

  16. Lins TF, Azaiez J (2016) Flow instabilities of time-dependent injection schemes in immiscible displacements. Can J Chem Eng 94(11):2061–2071. https://doi.org/10.1002/cjce.22600

    Article  Google Scholar 

  17. Chaudhuri A, Vishnudas R (2018) A systematic numerical modeling study of various polymer injection conditions on immiscible and miscible viscous fingering and oil recovery in a five-spot setup. Fuel 232:431–443. https://doi.org/10.1016/J.FUEL.2018.05.115

    Article  Google Scholar 

  18. Ferer M, Ji C, Bromhal GS, Cook J, Ahmadi G, Smith DH (2004) Crossover from capillary fingering to viscous fingering for immiscible unstable flow: experiment and modeling. Phys Rev E Stat Nonlinear Soft Matter Phys 70(1 Pt 2):16303. https://doi.org/10.1103/PhysRevE.70.016303

    Article  Google Scholar 

  19. Karadimitriou NK, Hassanizadeh SM (2012) A review of micromodels and their use in two-phase flow studies. Vadose Zo J. https://doi.org/10.2136/vzj2011.0072

    Article  Google Scholar 

  20. Farzaneh SA, Dehghan AA, Kharrat R, Ghazanfari MH (2011) An experimental investigation of fracture physical properties on heavy oil displacement efficiency during solvent flooding. Energy Sources Part A Recover Util Environ Eff 33(21):1993–2004. https://doi.org/10.1080/15567030903515039

    Article  Google Scholar 

  21. Nakanishi Y, Hyodo A, Wang L, Suekane T (2016) Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium. Adv Water Resour 97:224–232. https://doi.org/10.1016/J.ADVWATRES.2016.09.015

    Article  Google Scholar 

  22. Li H, Maini B, Azaiez J (2006) Experimental and numerical analysis of the viscous fingering instability of the shear-thinning fluids. Can J Chem Eng 84:52–62

    Article  Google Scholar 

  23. Cinar Y, Jessen K, Berenblyum R, Juanes R, Orr FM Jr (2004) An experimental and numerical investigation of crossflow effects in two-phase displacements. Soc Pet Eng. https://doi.org/10.2118/90568-MS

    Article  Google Scholar 

  24. Yuan Q, Zhou X, Wang J, Zeng F, Knorr KD, Imran M (2019) Control of viscous fingering and mixing in miscible displacements with time-dependent rates. AIChE J 65(1):360–371

    Article  Google Scholar 

  25. Chen C-Y, Huang C-W, Wang L-C, Miranda JA (2010) Controlling radial fingering patterns in miscible confined flows. Phys Rev E 82(5):56308

    Article  Google Scholar 

  26. Rabbani S, Abderrahmane H, Sassi M (2019) Inertial effects on dynamics of immiscible viscous fingering in homogenous porous media. Fluids 4(2):79

    Article  Google Scholar 

  27. Dias EO, Miranda JA (2010) Control of radial fingering patterns: a weakly nonlinear approach. Phys Rev E 81(1):16312

    Article  Google Scholar 

  28. Dias EO, Parisio F, Miranda JA (2010) Suppression of viscous fluid fingering: a piecewise-constant injection process. Phys Rev E 82(6):67301

    Article  Google Scholar 

  29. Dias EO, Alvarez-Lacalle E, Carvalho MS, Miranda JA (2012) Minimization of viscous fluid fingering: a variational scheme for optimal flow rates. Phys Rev Lett 109(14):144502

    Article  Google Scholar 

  30. Shiri Y, Hassani H, Nazari M, Sharifi M (2018) Water flooding and viscous fingering in fracture and porous media by lattice boltzmann method. Chem Biochem Eng Q 32(1):103–115

    Article  Google Scholar 

  31. Dietrich P, Helmig R, Sauter M, Hötzl H, Köngeter J, Teutsch G (2010) Flow and transport in fractured porous media. Springer, Berlin. https://doi.org/10.1007/b138453

    Book  Google Scholar 

  32. Hematpour H, Arabjamloei R, Nematzadeh M, Esmaili H, Mardi M (2012) An experimental investigation of surfactant flooding efficiency in low viscosity oil using a glass micromodel. Energy Sources Part A Recover Util Environ Eff 34(19):1745–1758. https://doi.org/10.1080/15567036.2010.490821

    Article  Google Scholar 

  33. Rokhforouz MR, Akhlaghi Amiri HA (2018) Pore-level influence of micro-fracture parameters on visco-capillary behavior of two-phase displacements in porous media. Adv Water Resour 113:260–271. https://doi.org/10.1016/j.advwatres.2018.01.030

    Article  Google Scholar 

  34. Taylor G (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc R Soc Lond A Math Phys Sci 201(1065):192–196

    MathSciNet  MATH  Google Scholar 

  35. Zhang H, Ramakrishnan TS, Nikolov A, Wasan D (2018) Enhanced oil displacement by nanofluid’s structural disjoining pressure in model fractured porous media. J Colloid Interface Sci 511:48–56. https://doi.org/10.1016/j.jcis.2017.09.067

    Article  Google Scholar 

  36. Christie MA, Jones ADW, Muggeridge AH (1990) Comparison between laboratory experiments and detailed simulations of unstable miscible displacement influenced by gravity. North Sea Oil Gas Reserv. https://doi.org/10.1007/978-94-009-0791-1_20

    Article  Google Scholar 

  37. Mohammadi S, Maghzi A, Ghazanfari MH, Masihi M, Mohebbi A, Kharrat R (2013) On the control of glass micro-model characteristics developed by laser technology. Energy Sources Part A Recover Util Environ Eff 35(3):193–201. https://doi.org/10.1080/15567036.2010.516325

    Article  Google Scholar 

  38. McKellar M, Wardlaw NC (1982) A method of making two-dimensional glass micromodels of pore systems. J Can Pet Technol 21(04):4. https://doi.org/10.2118/82-04-03

    Article  Google Scholar 

  39. Arabloo M, Shokrollahi A, Ghazanfari MH, Rashtchian D (2015) Characterization of viscous fingering during displacements of low tension natural surfactant in fractured multi-layered heavy oil systems. Chem Eng Res Des 96:23–34. https://doi.org/10.1016/j.cherd.2015.01.009

    Article  Google Scholar 

  40. Kianinejad A, Ghazanfari MH, Kharrat R, Rashtchian D (2013) An experimental investigation of surfactant flooding as a good candidate for enhancing oil recovery from fractured reservoirs using one-quarter five spot micromodels: the role of fracture geometrical properties. Energy Sources Part A Recover Util Environ Eff 35(20):1929–1938. https://doi.org/10.1080/15567036.2010.525591

    Article  Google Scholar 

  41. Dehghan AA, Kharrat R, Ghazanfari MH, Farzaneh SA (2009) Studying the effects of pore geometry, wettability and co-solvent types on the efficiency of solvent flooding to heavy oil in five-spot models. Soc Pet Eng. https://doi.org/10.2118/123315-MS

    Article  Google Scholar 

  42. Mohajeri M, Hemmati M, Shekarabi AS (2015) An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel. J Pet Sci Eng 126:162–173. https://doi.org/10.1016/j.petrol.2014.11.012

    Article  Google Scholar 

  43. LAGE JL (1998) The fundamental theory of flow through permeable media from Darcy to turbulence. In: Transport phenomena in porous media. Elsevier, pp 1–30

  44. Enjamoori S, Azaiez J, Maini B (2010) Viscous fingering instability in the displacements of oil in water emulsions. In: HEFAT 2010

  45. Kawaguchi M, Makino K, Kato T (1997) Viscous fingering patterns in polymer solutions. Phys D Nonlinear Phenom 109(3–4):325–332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Saffari.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare Vamerzani, B., Zadehkabir, A., Saffari, H. et al. Experimental analysis of fluid displacement and viscous fingering instability in fractured porous medium: effect of injection rate. J Braz. Soc. Mech. Sci. Eng. 43, 66 (2021). https://doi.org/10.1007/s40430-020-02790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02790-9

Keywords

Navigation