Skip to main content
Log in

A critical review of modelling methods for flexible and rigid link manipulators

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Mathematical modelling plays an important role for robotic manipulators in order to design their particular controllers. Also, it is hard challenge to obtain an accurate mathematical model or obtain a suitable modelling method in such vast field. Thus, this critical review is advantageous and indispensable for researchers who are interested in the area to gain fruitful knowledge on the mathematical modelling methods. This paper is classified based on the type of robotic manipulators such as flexible link manipulators (FLMs), rigid link manipulators (RLMs) and hybrid manipulators which involves rigid links and flexible links. The used modelling methods for FLMs are the assumed mode method, the finite element method, and the lumped parameter method as approximation techniques which are well explained and reviewed. The Lagrangian method has inclusive explanation and review which is widely participated for obtaining the dynamic equations of FLMs, and it is appropriate and commonly employed for modelling RLMs. The Newtonian method, the forward kinematic, and the inverse kinematic are also well discussed and reviewed which are suitable and commonly employed for modelling RLMs. The critical discussion of 170 articles reported in this paper guides researchers to select the suitable method for modelling. This paper reviews the published articles in the period of 2010–2020 except for few older articles for the need of providing essential theoretical knowledge. The advantages and disadvantages of each method are well summarized at the end of the paper. The intelligent identification methods are briefly discussed due to the lack of publications especially on the period of 2010–2020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xiao B, Yin S, Kaynak O (2016) Tracking control of robotic manipulators with uncertain kinematics and dynamics. IEEE Trans Ind Electron 63(10):6439–6449

    Google Scholar 

  2. Mondal S, Mahanta C (2014) Adaptive second order terminal sliding mode controller for robotic manipulators. J Frankl Inst 351(4):2356–2377

    MathSciNet  MATH  Google Scholar 

  3. Alandoli EA, Sulaiman M, Rashid MZA, Shah HNM, Ismail Z (2016) A review study on flexible link manipulators. J Telecommun Electron Comput Eng 8(2):93–97

    Google Scholar 

  4. Sun C, Gao H, He W, Yu Y (2018) Fuzzy neural network control of a flexible robotic manipulator using assumed mode method. IEEE Trans Neural Netw Learn Syst 29(11):5214–5227

    MathSciNet  Google Scholar 

  5. Mejerbi M, Zribi S, Knani J (2018) Dynamic modeling of flexible manipulator based on a large number of finite elements. In: Proceedings of the international conference on advanced systems and electric technologies, pp 357–362

  6. Alandoli EA, Rashid MZA, Sulaiman M (2017) A comparison of pid and lqr controllers for position tracking and vibration suppression of flexible link manipulator. J Theor Appl Inf Technol 95(13):2949–2955

    Google Scholar 

  7. Tavasoli A, Mohammadpour O (2018) Dynamic modeling and adaptive robust boundary control of a flexible robotic arm with 2-dimensional rigid body rotation. Int J Adapt Control Signal Process 32(6):891–907

    MathSciNet  MATH  Google Scholar 

  8. Shitole C, Sumathi P (2015) Sliding DFT-based vibration mode estimator for single-link flexible manipulator. IEEE/ASME Trans Mechatron 20(6):3249–3256

    Google Scholar 

  9. Wang FY, Gao Y (2016) On frequency sensitivity and mode orthogonality of flexible robotic manipulators. IEEE/CAA J Autom Sin 3(4):394–397

    MathSciNet  Google Scholar 

  10. Alandoli EA, Shah HNM, Sulaiman M, Rashid MZA, Aras MSM (2018) PD/H-∞ Integrated controller for position tracking and vibration suppression of flexible link manipulator system. Int J Mech Mechatron Eng 18(3):54–61

    Google Scholar 

  11. He W, Ouyang Y, Hong J (2016) Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans Ind Inf 13(1):48–59

    Google Scholar 

  12. Shawky A, Zydek D, Elhalwagy YZ, Ordys A (2013) Modeling and nonlinear control of a flexible-link manipulator. Appl Math Model 37(23):9591–9602

    MathSciNet  MATH  Google Scholar 

  13. Suklabaidya S, Lochan K, Roy BK (2015) Control of rotational base single link flexible manipulator using different SMC techniques for variable payloads. In: Proceedings of the international conference on energy, power and environment: towards sustainable growth, pp 1–6

  14. San-Millan A, Feliu V, Garcia A (2015) A two-stage control scheme of single-link flexible manipulators. In: Proceedings of the 23rd mediterranean conference on control and automation, pp 1098–1105

  15. Neugschwandtner G, Reekmans M, van der Linden D (2013) An open automation architecture for flexible manufacturing. In: Proceedings of the IEEE 18th conference on emerging technologies and factory automation, pp 1–5

  16. Gao H, He W, Zhou C, Sun C (2018) Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Trans Ind Inf 15(2):755–765

    Google Scholar 

  17. Lochan K, Roy BK, Subudhi B (2016) A review on two-link flexible manipulators. Annu Rev Control 42:346–367

    Google Scholar 

  18. Ding W, Shen Y (2017) Analysis of transient deformation response for flexible robotic manipulator using assumed mode method. In: Proceedings of the 2nd Asia-Pacific conference on intelligent robot systems, pp 331–335

  19. Rahimi HN, Nazemizadeh M (2014) Dynamic analysis and intelligent control techniques for flexible manipulators: a review. Adv Robot 28(2):63–76

    Google Scholar 

  20. Sayahkarajy M, Mohamed Z, Mohd Faudzi AA (2016) Review of modelling and control of flexible-link manipulators. Proc Inst Mech Eng Part I J Syst Control Eng 230(8):861–873

    Google Scholar 

  21. Khairudin M, Mohamed Z, Husain AR (2011) Dynamic model and robust control of flexible link robot manipulator. Telkomnika 9(2):279

    Google Scholar 

  22. Reddy P, Shihabudheen KV, Jacob J (2012) Precise non linear modeling of flexible link flexible joint manipulator. Int Rev Model Simul 5(3B):1368–1374

    Google Scholar 

  23. Mishra N, Singh SP, Nakra BC (2015) Dynamic analysis of a single link flexible manipulator using Lagrangian-assumed modes approach. In: Proceedings of the international conference on industrial instrumentation and control, pp 1144–1149

  24. Gao H, He W, Song Y, Zhang S, Sun C (2018) Modeling and neural network control of a flexible beam with unknown spatiotemporally varying disturbance using assumed mode method. Neurocomputing 314:458–467

    Google Scholar 

  25. Khairudin M, Mohamed Z, Husain AR, Ahmad MA (2010) Dynamic modelling and characterisation of a two-link flexible robot manipulator. J Low Freq Noise Vib Active Control 29(3):207–219

    Google Scholar 

  26. Gao H, He W (2016) Fuzzy control of a single-link flexible robotic manipulator using assumed mode method. In: Proceedings of the 31st youth academic annual conference of Chinese association of automation, pp 201–206

  27. Yang X, Ge SS, He W (2018) Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. Int J Control 91(4):969–988

    MathSciNet  Google Scholar 

  28. Khairudin M (2010) Dynamic modelling of a flexible link manipulator robot using AMM. Telkomnika 6(3):187–188

    Google Scholar 

  29. Subudhi BAMS, Morris AS (2002) Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot Auton Syst 41(4):257–270

    MATH  Google Scholar 

  30. Theodore RJ, Ghosal A (1997) Modeling of flexible-link manipulators with prismatic joints. IEEE Trans Syst Man Cybern B Cybern 27(2):296–305

    Google Scholar 

  31. Kakhki MH, Ebrahimi S (2014) Study on the effect of axial forces on dynamic stiffening of a 3-RPR planar parallel manipulator with flexible intermediate links. In: Proceedings of the second RSI/ISM international conference on robotics and mechatronics, pp 083–088

  32. Korayem MH, Rahimi HN (2011) Nonlinear dynamic analysis for elastic robotic arms. Front Mech Eng 6(2):219–228

    Google Scholar 

  33. Martins JM, Mohamed Z, Tokhi MO, Da Costa JS, Botto MA (2003) Approaches for dynamic modelling of flexible manipulator systems. IEE Proc Control Theory Appl 150(4):401–411

    Google Scholar 

  34. Gurses K, Buckham BJ, Park EJ (2009) Vibration control of a single-link flexible manipulator using an array of fiber optic curvature sensors and PZT actuators. Mechatronics 19(2):167–177

    Google Scholar 

  35. Vakil M, Fotouhi R, Nikiforuk PN (2012) A new method for dynamic modeling of flexible–link flexible–joint manipulators. J Vib Acoust 134(1):1–11

    Google Scholar 

  36. Esfandiar H, Korayem MH (2015) Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load. J Mech Sci Technol 29(9):3971–3982

    Google Scholar 

  37. Esfandiar H, Daneshmand S (2012) Complete dynamic modeling and approximate state space equations of the flexible link manipulator. J Mech Sci Technol 26(9):2845–2856

    Google Scholar 

  38. Zebin T, Alam MS (2010) Dynamic modeling and fuzzy logic control of a two-link flexible manipulator using genetic optimization techniques. In: Proceedings of the 13th international conference on computer and information technology, pp 418–423

  39. Heidari HR, Korayem MH, Haghpanahi M, Batlle VF (2011) A new nonlinear finite element model for the dynamic modeling of flexible link manipulators undergoing large deflections. In: Proceedings of the IEEE international conference on mechatronics, pp 375–380

  40. Tokhi MO, Mohamed Z, Shaheed MH (2001) Dynamic characterisation of a flexible manipulator system. Robotica 19(5):571–580

    Google Scholar 

  41. Mohamed Z, Faudzi AAM, Supriyanto E, Owen DRJ (2016) Hybrid vibration and rest-to-rest control of a two-link flexible robotic arm using H∞ loop-shaping control design. Eng Comput 33(2):395–409

    Google Scholar 

  42. Korayem MH, Haghpanahi M, Heydari H (2010) Maximum allowable dynamic load of flexible manipulators undergoing large deformation. Sci Iran Trans B Mech Eng 17(1):61–74

    MATH  Google Scholar 

  43. Korayem MH, Haghpanahi M, Rahimi HN, Nikoobin A (2009) Finite element method and optimal control theory for path planning of elastic manipulators. In: Proceedings of the new advances in intelligent decision technologies, Berlin, Heidelberg, pp 117–126

  44. Mortazavi B, Baniassadi M, Bardon J, Ahzi S (2013) Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods. Compos B Eng 45(1):1117–1125

    Google Scholar 

  45. Ata AA, Fares WF, Sa’adeh MY (2012) Dynamic analysis of a two-link flexible manipulator subject to different sets of conditions. Procedia Eng 41:1253–1260

    Google Scholar 

  46. Quan QQ, Chen CB, Deng ZQ, Tang JY, Tang DW (2018) On modeling drilling load in lunar regolith simulant. Chin J Mech Eng 31(20):1–12

    Google Scholar 

  47. Xilun D, Selig JM (2004) Lumped parameter dynamic modeling for the flexible manipulator. In: Proceedings of the World Congress on intelligent control and automation, pp 280–284

  48. Sun C, He W, Hong J (2016) Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans Syst Man Cybern Syst 47(8):1863–1874

    Google Scholar 

  49. Fayazi A, Pariz N, Karimpour A, Hosseinnia SH (2018) Robust position-based impedance control of lightweight single-link flexible robots interacting with the unknown environment via a fractional-order sliding mode controller. Robotica 36(12):1920–1942

    Google Scholar 

  50. Zhu G, Ge SS, Lee TH (1999) Simulation studies of tip tracking control of a single-link flexible robot based on a lumped model. Robotica 17(1):71–78

    Google Scholar 

  51. Kim SM (2014) Lumped element modeling of a flexible manipulator system. IEEE/ASME Trans Mechatron 20(2):967–974

    Google Scholar 

  52. Kim JS, Uchiyama M (2000) Dynamic modeling of two cooperating flexible manipulators. KSME Int J 14(2):188–196

    Google Scholar 

  53. Long T, Li E, Yang G, Liang Z (2016) A novel model analysis method and dynamic modelling for hybrid structure flexible manipulator. In: Proceedings of the IEEE international conference on mechatronics and automation, pp 2290–2295

  54. Saini SC, Sharma Y, Bhandari M, Satija U (2012) Comparison of pole placement and LQR applied to single link flexible manipulator. In: Proceedings of the international conference on communication systems and network technologies, pp 843–847

  55. Benosman M, Boyer F, Le Vey G, Primault D (2002) Flexible links manipulators: from modelling to control. J Intell Robot Syst 34(4):381–414

    MATH  Google Scholar 

  56. Tso SK, Yang TW, Xu WL, Sun ZQ (2003) Vibration control for a flexible-link robot arm with deflection feedback. Int J Non-Linear Mech 38(1):51–62

    MATH  Google Scholar 

  57. Baroudi M, Saad M, Ghie W, Kaddouri A, Ziade H (2010) Vibration controllability and observability of a single-link flexible manipulator. In: Proceedings of the 7th international multi-conference on systems, signals and devices, pp 1–6

  58. Mahamood RM, Pedro JO (2011) Hybrid PD/PID controller design for two-link flexible manipulators. In: Proceedings of the 8th Asian control conference, pp 1358–1363

  59. Kurode S, Dixit P (2012) Control of tip position of flexible link manipulator using sliding modes. In: Proceedings of the advances in control and optimization of dynamic systems, pp 949–952

  60. Pedro JO, Tshabalala T (2015) Hybrid NNMPC/PID control of a two-link flexible manipulator with actuator dynamics. In: Proceedings of the 10th Asian control conference, pp 1–6

  61. Chen W (2001) Dynamic modeling of multi-link flexible robotic manipulators. Comput Struct 79(2):183–195

    Google Scholar 

  62. Raouf F, Mohamad S, Maarouf S, Maamar B (2017) Distributed adaptive control strategy for flexible link manipulators. Robotica 35(7):1562–1584

    Google Scholar 

  63. Ahmad MA, Nasir ANK, Hambali N (2009) Techniques of vibration feedback control of a flexible robot manipulator. In: Proceedings of the 6th international symposium on mechatronics and its applications, pp 1–6

  64. Al-Bedoor BO, Almusallam AA (2000) Dynamics of flexible-link and flexible-joint manipulator carrying a payload with rotary inertia. Mech Mach Theory 35(6):785–820

    MATH  Google Scholar 

  65. Alandoli EA, Lee TS (2020) A critical review of control techniques for flexible and rigid link manipulators. Robotica. https://doi.org/10.1017/s0263574720000223

    Article  Google Scholar 

  66. Ahmad SG, Elbanna AS, Elksas MS, Areed FG (2018) Dynamic modelling with a modified PID controller of a three link rigid manipulator. Int J Comput Appl 179:1–6

    Google Scholar 

  67. Al-Qahtani HM, Mohammed AA, Sunar M (2017) Dynamics and control of a robotic arm having four links. Arab J Sci Eng 42(5):1841–1852

    MathSciNet  MATH  Google Scholar 

  68. Green A, Sasiadek J (2003) Robot manipulator control for rigid and assumed mode flexible dynamics models. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit, pp 1–11

  69. Yadav PS, Singh N (2015) Robust control of two link rigid manipulator. Int J Inf Electron Eng 5(3):3–8

    Google Scholar 

  70. Dou H, Wang S (2013) Robust adaptive motion/force control for motion synchronization of multiple uncertain two-link manipulators. Mech Mach Theory 67:77–93

    Google Scholar 

  71. Ardestani MA, Asgari M (2012) Modeling and analysis of a novel 3-DOF spatial parallel robot. In: Proceedings of the 19th international conference on mechatronics and machine vision in practice, pp 162–167

  72. Boujnah F, Knani J (2015) Motion simulation of a manipulator robot modeled by a CAD software. In: Proceedings of the 7th international conference on modelling, identification and control, pp 1–6

  73. Rat NR, Neagoe M (2009) Rigid vs. flexible links dynamic analysis of a 3DOF parallel robot. In: Proceedings of the 3rd IEEE international conference on digital ecosystems and technologies, pp 534–539

  74. Soltanpour MR, Shafiei SE (2010) Robust adaptive control of manipulators in the task space by dynamical partitioning approach. Elektronika ir Elektrotechnika 101(5):73–78

    Google Scholar 

  75. Siqueira AA, Terra MH, Ishihara JY, Barbeiro TL (2009) Underactuated manipulator robot control via H2, H∞, H2/H∞, and µ-synthesis approaches: a comparative study. J Braz Soc Mech Sci Eng 31(4):279–288

    Google Scholar 

  76. Zhang D, Wei B (2017) Design, analysis and modelling of a hybrid controller for serial robotic manipulators. Robotica 35(9):1888–1905

    Google Scholar 

  77. Sciavicco L, Siciliano B, Villani L (1995) Lagrange and Newton–Euler dynamic modeling of a gear-driven robot manipulator with inclusion of motor inertia effects. Adv Robot 10(3):317–334

    Google Scholar 

  78. Hollerbach JM (1980) A recursive lagrangian formulation of maniputator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans Syst Man Cybern 10(11):730–736

    Google Scholar 

  79. Dasgupta B, Choudhury P (1999) A general strategy based on the Newton–Euler approach for the dynamic formulation of parallel manipulators. Mech Mach Theory 34(6):801–824

    MathSciNet  MATH  Google Scholar 

  80. Silver WM (1982) On the equivalence of Lagrangian and Newton–Euler dynamics for manipulators. Int J Robot Res 1(2):60–70

    Google Scholar 

  81. Bi ZM, Kang B (2014) An inverse dynamic model of over-constrained parallel kinematic machine based on Newton–Euler formulation. J Dyn Syst Meas Control 136(4):1–9

    Google Scholar 

  82. Cheung JW, Hung YS (2005) Modelling and control of a 2-DOF planar parallel manipulator for semiconductor packaging systems. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, pp 717–722

  83. Mohammed B (2017) Robust control of two link rigid manipulator with nonlinear dynamic model. In: Proceedings of the international conference on electrical and information technologies, pp 1–6

  84. Zyada Z, Hayakawa Y, Hosoe S (2010) Model-based control for nonprehensile manipulation of a two-rigid-link object by two cooperative arms. In: Proceedings of the IEEE international conference on robotics and biomimetics, pp 472–477

  85. Kim MG, Park IG (2015) Initial investigation of gravity and friction compensation of 2-DOF robot manipulator for programming by demonstration. In: Proceedings of the 12th international conference on ubiquitous robots and ambient intelligence, pp 433–434

  86. Al-Shuka HF, Corves BJ, Zhu WH (2014) Dynamic modeling of biped robot using Lagrangian and recursive Newton–Euler formulations. Int J Comput Appl 101(3):1–8

    Google Scholar 

  87. Khalil W (2011) Dynamic modeling of robots using newton-euler formulation. In: Proceedings of the informatics in control, automation and robotics, Berlin, Heidelberg, pp 3–20

  88. He W, Ge W, Li Y, Liu YJ, Yang C, Sun C (2016) Model identification and control design for a humanoid robot. IEEE Trans Syst Man Cybern Syst 47(1):45–57

    Google Scholar 

  89. Duguleana M, Barbuceanu FG, Teirelbar A, Mogan G (2012) Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robot Comput Integr Manuf 28(2):132–146

    Google Scholar 

  90. Kostic D, De Jager B, Steinbuch M, Hensen R (2004) Modeling and identification for high-performance robot control: an RRR-robotic arm case study. IEEE Trans Control Syst Technol 12(6):904–919

    Google Scholar 

  91. Choi HB, Company O, Pierrot F, Konno A, Shibukawa T, Uchiyama M (2003) Design and control of a novel 4-DOFs parallel robot H4. In: Proceedings of the ieee international conference on robotics and automation, pp 1185–1190

  92. Jamwal PK, Xie SQ, Tsoi YH, Aw KC (2010) Forward kinematics modelling of a parallel ankle rehabilitation robot using modified fuzzy inference. Mech Mach Theory 45(11):1537–1554

    MATH  Google Scholar 

  93. Kucuk S, Bingul Z (2014) Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl Math Model 38(7–8):1983–1999

    MathSciNet  MATH  Google Scholar 

  94. Dancuo Z, Vidakovic J, Kvrgic V, Ferenc G, Lutovac M (2012) Modeling a human centrifuge as three-DoF robot manipulator. In: Proceedings of the mediterranean conference on embedded computing, pp 149–152

  95. Kucuk S, Gungor BD (2016) Inverse kinematics solution of a new hybrid robot manipulator proposed for medical purposes. In: Proceedings of the medical technologies national congress, pp 1–4

  96. Ebrahimi S, Mardany A (2015) Dynamic modeling and construction of a two-wheeled mobile manipulator, part I: self-balancing. In: Proceedings of the 3rd rsi international conference on robotics and mechatronics, pp 164–169

  97. Mardany A, Ebrahimi S (2015) Dynamic modeling and construction of a two-wheeled mobile manipulator, part II: modified obstacle climbing. In: Proceedings of the 3rd RSI international conference on robotics and mechatronics, pp 170–175

  98. Wu J, Wang J, You Z (2011) A comparison study on the dynamics of planar 3-DOF 4-RRR, 3-RRR and 2-RRR parallel manipulators. Robot Comput Integr Manuf 27(1):150–156

    Google Scholar 

  99. Serrezuela RR, Chavarro AFC, Cardozo MT, Toquica AL, Martinez LFO (2017) Kinematic modelling of a robotic arm manipulator using Matlab. ARPN J Eng Appl Sci 12(7):2037–2045

    Google Scholar 

  100. Ortiz-Salazar M, Rodriguez-Linan A, Torres-Trevino LM, López-Juárez I (2015) IMU-based trajectory generation and modelling of 6-DOF Robot manipulators. In: Proceedings of the international conference on mechatronics, electronics and automotive engineering, pp 181–186

  101. Fareh R, Saad M, Saad M (2015) Distributed control strategy for flexible link manipulators. Robotica 33(4):768–786

    MATH  Google Scholar 

  102. Fenili A, Balthazar JM (2011) The rigid-flexible nonlinear robotic manipulator: modeling and control. Commun Nonlinear Sci Numer Simul 16(5):2332–2341

    Google Scholar 

  103. Reyhanoglu M, Hoffman D, de Wit J (2016) Nonlinear modeling and control of a two-link hybrid manipulator. In: Proceedings of the 14th international conference on control, automation, robotics and vision, pp 1–5

  104. Ge X, Chang J (2010) Trajectory tracking control of space rigid flexible manipulator. In: Proceedings of the international conference on measuring technology and mechatronics automation, pp 1047–1049

  105. Hussein MT, Nemah MN (2015) Control of a two-link (rigid-flexible) manipulator. In: Proceedings of the 3rd RSI international conference on robotics and mechatronics, pp 720–724

  106. Onen U, Kalyoncu M, Tinkir M, Botsali FM (2010) Adaptive network based fuzzy logic control of a rigid-flexible robot manipulator. In: Proceedings of the 2nd international conference on computer and automation engineering, pp 102–106

  107. Irani AN, Talebi HA (2011) Tip tracking control of a rigid-flexible manipulator based on deflection estimation using neural networks: application to needle insertion. In: Proceedings of the ISSNIP biosignals and biorobotics conference, pp 1–6

  108. Sayahkarajy M, Supriyanto E, Mohamed Z (2017) Principal vibration modes of a rigid-flexible manipulator. In: Proceedings of the international conference on robotics, automation and sciences, pp 1–5

  109. Cao F, Liu J (2017) An adaptive iterative learning algorithm for boundary control of a coupled ODE–PDE two-link rigid–flexible manipulator. J Frankl Inst 354(1):277–297

    MathSciNet  MATH  Google Scholar 

  110. Cao F, Liu J (2017) Vibration control for a rigid-flexible manipulator with full state constraints via Barrier Lyapunov function. J Sound Vib 406:237–252

    Google Scholar 

  111. Yang H, Liu J, Lan X (2015) Observer design for a flexible-link manipulator with PDE model. J Sound Vib 341:237–245

    Google Scholar 

  112. Isermann R, Münchhof M (2010) Identification of dynamic systems: an introduction with applications. Springer, London

    MATH  Google Scholar 

  113. Shaheed MH, Azad AK, Tokhi MO (2006) Intelligent modelling of flexible manipulator systems. In: Proceedings of the climbing and walking robots, Berlin, Heidelberg, pp 607–614

  114. Su H, Qi W, Yang C, Sandoval J, Ferrigno G, De Momi E (2020) Deep neural network approach in robot tool dynamics identification for bilateral teleoperation. IEEE Robot Autom Lett 5(2):2943–2949

    Google Scholar 

  115. Jamali A, Mat Darus IZ, Mohd Samin PP, Tokhi MO (2018) Intelligent modeling of double link flexible robotic manipulator using artificial neural network. J Vibroeng 20(2):1021–1034

    Google Scholar 

  116. Gol Zardian M, Ayob A (2015) Intelligent modelling and active vibration control of flexible manipulator system. J Vibroeng 17(4):1879–1891

    Google Scholar 

  117. Azad AK, Tokhi MO, Pathania A, Shaheed MH (2004) A MatLab/Simulink based environment for intelligent modelling and simulation of flexible manipulator systems. In: Proceedings of the American society for engineering education annual conference and exposition, pp 1–14

  118. West C, Montazeri A, Monk SD, Taylor CJ (2016) A genetic algorithm approach for parameter optimization of a 7DOF robotic manipulator. IFAC-Papers OnLine 49(12):1261–1266

    Google Scholar 

  119. Alam MS (2012) Dynamic modelling of flexible manipulator system using genetic algorithm. Dhaka Univ J Sci 60(2):239–245

    Google Scholar 

  120. Abe A (2009) Trajectory planning for residual vibration suppression of a two-link rigid–flexible manipulator considering large deformation. Mech Mach Theory 44(9):1627–1639

    MATH  Google Scholar 

  121. Ju J, Li W, Wang Y, Fan M, Yang X (2016) Two-time scale virtual sensor design for vibration observation of a translational flexible-link manipulator based on singular perturbation and differential games. Sensors 16(11):1–14

    Google Scholar 

  122. Mehrez MW, El-Badawy AA (2010) Effect of the joint inertia on selection of under-actuated control algorithm for flexible-link manipulators. Mech Mach Theory 45(7):967–980

    MATH  Google Scholar 

  123. Zhang DG (2009) Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms. Appl Math Mech 30(10):1283–1294

    MathSciNet  MATH  Google Scholar 

  124. Shafei AM, Shafei HR (2018) Oblique impact of multi-flexible-link systems. J Vib Control 24(5):904–923

    MathSciNet  Google Scholar 

  125. Raju EM, Krishna LSR, Mouli YSC, Rao VN (2015) Effect of link flexibility on tip position of a single link robotic arm. J Phys Conf Ser 662(1):1–7

    Google Scholar 

  126. Sharifnia M, Akbarzadeh A (2017) A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst Dyn 40(3):261–285

    MathSciNet  MATH  Google Scholar 

  127. Reddy MPP, Jacob J (2017) Vibration control of flexible link manipulator using SDRE controller and Kalman filtering. Stud Inf Control 2:143–150

    Google Scholar 

  128. Cao F, Liu J (2020) Three-dimensional modeling and input saturation control for a two-link flexible manipulator based on infinite dimensional model. J Frankl Inst 357(2):1026–1042

    MathSciNet  MATH  Google Scholar 

  129. Mehrjooee O, Fathollahi Dehkordi S, Habibnejad Korayem M (2019) Dynamic modeling and extended bifurcation analysis of flexible-link manipulator. Mech Based Des Struct Mach 19:1–24

    Google Scholar 

  130. Pradhan SK, Subudhi B (2018) Position control of a flexible manipulator using a new nonlinear self tuning PID controller. IEEE/CAA J Autom Sin 7(1):136–149

    MathSciNet  Google Scholar 

  131. Kumar P, Pratiher B (2020) Position analysis and nonlinear phenomena of flexible manipulator with generic payload mounted on a moving base. Proc Inst Mech Eng Part K J Multi-body Dyn 234(2):408–423

    Google Scholar 

  132. Ni Z, Wu S, Zhang Y, Wu Z (2020) Payload parameter identification of a flexible space manipulator system via complex eigenvalue estimation. Int J Aerosp Eng. https://doi.org/10.1155/2020/5142925

    Article  Google Scholar 

  133. Yu X (2020) Hybrid-trajectory based terminal sliding mode control of a flexible space manipulator with an elastic base. Robotica 38(3):550–563

    Google Scholar 

  134. Karagülle H, Malgaca L, Dirilmiş M, Akdağ M, Yavuz Ş (2017) Vibration control of a two-link flexible manipulator. J Vib Control 23(12):2023–2034

    MathSciNet  Google Scholar 

  135. My CA, Bien DX, Le CH, Packianather M (2019) An efficient finite element formulation of dynamics for a flexible robot with different type of joints. Mech Mach Theory 134:267–288

    Google Scholar 

  136. Mahto S (2014) Shape optimization of revolute-jointed single link flexible manipulator for vibration suppression. Mech Mach Theory 75:150–160

    Google Scholar 

  137. Heidari HR, Korayem MH, Haghpanahi M, Batlle VF (2013) Optimal trajectory planning for flexible link manipulators with large deflection using a new displacements approach. J Intell Robot Syst 72(3–4):287–300

    Google Scholar 

  138. Al-khafaji AA, Darus IZ (2014) Finite element method for dynamic modelling of an underwater flexible single-link manipulator. J Vibroeng 16(7):3620–3636

    Google Scholar 

  139. Belotti R, Caracciolo R, Palomba I, Richiedei D, Trevisani A (2018) An updating method for finite element models of flexible-link mechanisms based on an equivalent rigid-link system. Shock Vib. https://doi.org/10.1155/2018/1797506

    Article  Google Scholar 

  140. Sayahkarajy M, Supriyanto E, Mohamed Z (2020) Reduced order modeling of two-link flexible manipulators using finite element modal decomposition. Int J Mech 11:145–154

    Google Scholar 

  141. Cui L, Wang H, Chen W (2020) Trajectory planning of a spatial flexible manipulator for vibration suppression. Robot Auton Syst 123:103316

    Google Scholar 

  142. Shao M, Huang Y, Silberschmidt VV (2020) Intelligent manipulator with flexible link and joint: modeling and vibration control. Shock Vib. https://doi.org/10.1155/2020/4671358

    Article  Google Scholar 

  143. Dermawan D, Abbas H, Syam R, Djafar Z, Muhammad AK (2020) Dynamic modeling of a single-link flexible manipulator robot with translational and rotational motions. IIUM Eng J 21(1):228–239

    Google Scholar 

  144. Giorgio I, Del Vescovo D (2018) Non-linear lumped-parameter modeling of planar multi-link manipulators with highly flexible arms. Robotics 7(4):1–13

    Google Scholar 

  145. Altıner B, Delibaşı A, Erol B (2019) Modeling and control of flexible link manipulators for unmodeled dynamics effect. Proc Inst Mech Eng Part I J Syst Control Eng 233(3):245–263

    Google Scholar 

  146. Yu Y, Qi P, Althoefer K, Lam HK (2015) Lagrangian dynamics and nonlinear control of a continuum manipulator. In: Proceedings of the IEEE international conference on robotics and biomimetics, pp 1912–1917

  147. Silva BP, Santana BA, Santos TL, Martins MA (2020) An implementable stabilizing model predictive controller applied to a rotary flexible link: an experimental case study. Control Eng Pract 99:104396

    Google Scholar 

  148. Wronka CM, Dunnigan MW (2011) Derivation and analysis of a dynamic model of a robotic manipulator on a moving base. Robot Auton Syst 59(10):758–769

    Google Scholar 

  149. Mahil SM, Al-Durra A (2016) Modeling analysis and simulation of 2-DOF robotic manipulator. In: Proceedings of the IEEE 59th international midwest symposium on circuits and systems, pp 1–4

  150. Giacaglia GEO, de Queiroz LW (2012) Notes on Newton–Euler formulation of robotic manipulators. Proc Inst Mech Eng Part K J Multi-body Dyn 226(1):61–71

    Google Scholar 

  151. Sadraei E, Moghaddam MM (2015) On a moving base robotic manipulator dynamics. Int J Robot 4(3):66–74

    Google Scholar 

  152. Sánchez-Sánchez P, Arteaga-Pérez MA (2012) Simplied methodology for obtaining the dynamic model of robot manipulators. Int J Adv Robot Syst 9(5):1–12

    Google Scholar 

  153. Záda V, Belda K (2016) Mathematical modeling of industrial robots based on Hamiltonian mechanics. In: Proceedings of the 17th international carpathian control conference, Tatranska Lomnica, Slovakia, pp 813–818

  154. Ata AA, Ghazy MA, Gadou MA (2013) Dynamics of a general multi-axis robot with analytical optimal torque analysis. J Autom Control Eng 1(2):144–148

    Google Scholar 

  155. Liu J, Liu R (2016) Simple method to the dynamic modeling of industrial robot subject to constraint. Adv Mech Eng 8(4):1–9

    Google Scholar 

  156. Amin ATM, Ab Rahim AH, Low CY (2014) Adaptive controller algorithm for 2-DOF humanoid robot arm. Procedia Technol 15:765–774

    Google Scholar 

  157. Kumar V, Sen S, Roy SS, Das SK, Shome SN (2015) Inverse kinematics of redundant manipulator using interval newton method. Int J Eng Manuf (IJEM) 5(2):19–29

    Google Scholar 

  158. Yang CF, Zheng ST, Jin J, Zhu SB, Han JW (2010) Forward kinematics analysis of parallel manipulator using modified global Newton–Raphson method. J Cent South Univ Technol 17(6):1264–1270

    Google Scholar 

  159. Lee SH, Kim J, Park FC, Kim M, Bobrow JE (2005) Newton-type algorithms for dynamics-based robot movement optimization. IEEE Trans Robot 21(4):657–667

    Google Scholar 

  160. Li X, Nishiguchi J, Minami M, Matsuno T, Yanou A (2015) Iterative calculation method for constraint motion by extended newton-euler method and application for forward dynamics. In: Proceedings of the IEEE/SICE international symposium on system integration, pp 313–319

  161. Lin Y, Min H (2015) Inverse kinematics of modular manipulator robot with shoulder offset based on geometric method mixed with analytical method algorithm. In: Proceedings of the IEEE international conference on cyber technology in automation, control, and intelligent systems, Shenyang, China, pp 1198–1203

  162. Fu Z, Yang W, Yang Z (2013) Solution of inverse kinematics for 6R robot manipulators with offset wrist based on geometric algebra. J Mech Robot 5(3):1–7

    Google Scholar 

  163. Singh S, Singla A, Singh A, Soni S, Verma S (2016) Kinematic modelling of a five-DOFs spatial manipulator used in robot-assisted surgery. Perspect Sci 8:550–553

    Google Scholar 

  164. Ye H, Wang D, Wu J, Yue Y, Zhou Y (2020) Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining. Robot Comput Integr Manuf 65:101961

    Google Scholar 

  165. Si G, Chu M, Zhang Z, Li H, Zhang X (2020) Integrating dynamics into design and motion optimization of a 3-PRR planar parallel manipulator with discrete time transfer matrix method. Math Prob Eng. https://doi.org/10.1155/2020/2761508

    Article  MathSciNet  Google Scholar 

  166. Gandarias JM, Wang Y, Stilli A, García-Cerezo AJ, Gómez-de-Gabriel JM, Wurdemann HA (2020) Open-loop position control in collaborative, modular variable-stiffness-link (VSL) robots. IEEE Robot Autom Lett 5(2):1772–1779

    Google Scholar 

  167. Zhang B, Wu J, Wang L, Yu Z (2020) Accurate dynamic modeling and control parameters design of an industrial hybrid spray-painting robot. Robot Comput Integr Manuf 63:101923

    Google Scholar 

  168. Peza-Solis JF, Silva-Navarro G, Castro-Linares NR (2015) Trajectory tracking control in a single flexible-link robot using finite differences and sliding modes. J Appl Res Technol 13(1):70–78

    Google Scholar 

  169. Thomas U, Wahl FM (2010) A unified notation for serial, parallel and hybrid kinematic structures. In: Proceedings of the robotic systems for handling and assembly, Berlin, Heidelberg, pp 3–15

  170. Singh A, Singla A (2017) Kinematic modeling of robotic manipulators. Proc Natl Acad Sci India Sect A 87(3):303–319

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Multimedia University (MMU) for supporting this research through MMU GRA Scheme (MMUI/180265) and to thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Ali Alandoli.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T.S., Alandoli, E.A. A critical review of modelling methods for flexible and rigid link manipulators. J Braz. Soc. Mech. Sci. Eng. 42, 508 (2020). https://doi.org/10.1007/s40430-020-02602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02602-0

Keywords

Navigation