Skip to main content
Log in

A new Wasserstein distance- and cumulative sum-dependent health indicator and its application in prediction of remaining useful life of bearing

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The safety and reliability of mechanical performance are affected by the condition (health status) of the bearings. A health indicator (HI) with high monotonicity and robustness is a helpful tool to simplify the predictive model and improve prediction accuracy. In this paper, a new health indicator based on the Wasserstein distance (WD) and cumulative sum (CUSUM) is proposed. First, a standard normal signal is simulated as the reference. The second step is to calculate the frequency distribution histogram of the reference signal and that of monitoring signals for the bearing. The next step is to obtain the WD between the frequency distribution histogram of the reference signal and that of the monitoring signal. Finally, the fluctuation of the WD is amplified by applying the CUSUM. The performance of the proposed HI is evaluated by testing three run-to-failure datasets. The results show that the proposed HI has better monotonicity and robustness and can be effectively used to predict the remaining useful life of bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kang M, Kim J, Jeong I, Kim J, Pecht M (2016) A massively parallel approach to real-time bearing fault detection using sub-band analysis on an FPGA-based multicore system. IEEE Trans Ind Electron 63:6325–6335. https://doi.org/10.1109/TIE.2016.2574986

    Article  Google Scholar 

  2. Li N, Lei Y, Lin J, Ding SX (2015) An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Trans Ind Electron 62:7762–7773. https://doi.org/10.1109/TIE.2015.2455055

    Article  Google Scholar 

  3. Lei Y, Li N, Gontarz S, Lin J, Radkowski S, Dybala J (2016) A model-based method for remaining useful life prediction of machinery. IEEE Trans Reliab 65:1314–1326. https://doi.org/10.1109/TR.2016.2570568

    Article  Google Scholar 

  4. Bastami AR, Aasi A, Arghand HA (2018) Estimation of remaining useful life of rolling element bearings using wavelet packet decomposition and artificial neural network. Iran J Sci Technol Trans Electr Eng 43:233–245. https://doi.org/10.1007/s40998-018-0108-y

    Article  Google Scholar 

  5. Zhu J, Chen N, Peng W (2018) Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans Ind Electron 66:3208–3216. https://doi.org/10.1109/TIE.2018.2844856

    Article  Google Scholar 

  6. Ren L, Sun Y, Cui J, Zhang L (2018) Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. J Manuf Syst 48:71–77. https://doi.org/10.1016/j.jmsy.2018.04.008

    Article  Google Scholar 

  7. Lei Y, Li N, Guo L, Li N, Yan T, Lin J (2018) Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech Syst Signal Process 104:799–834. https://doi.org/10.1016/j.ymssp.2017.11.016

    Article  Google Scholar 

  8. Hu C, Youn BD, Wang P, Yoon JT (2012) Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliab Eng Syst Safe 103:120–135. https://doi.org/10.1016/j.ress.2012.03.008

    Article  Google Scholar 

  9. Huang Z, Xu Z, Ke X, Wang W, Sun Y (2017) Remaining useful life prediction for an adaptive skew-Wiener process model. Mech Syst Signal Process 87:294–306. https://doi.org/10.1016/j.ymssp.2016.10.027

    Article  Google Scholar 

  10. Huang Z, Xu Z, Wang W, Sun Y (2015) Remaining useful life prediction for a nonlinear heterogeneous wiener process model with an adaptive drift. IEEE Trans Reliab 64:687–700. https://doi.org/10.1109/TR.2015.2403433

    Article  Google Scholar 

  11. Ahmad W, Ali KS, Kim J (2018) A hybrid prognostics technique for rolling element bearings using adaptive predictive models. IEEE Trans Ind Electron 65:1577–1584. https://doi.org/10.1109/TIE.2017.2733487

    Article  Google Scholar 

  12. Lei Y, Li N, Lin J (2016) A new method based on stochastic process models for machine remaining useful life prediction. IEEE Trans Instrum Meas 65:2671–2684. https://doi.org/10.1109/TIM.2016.2601004

    Article  Google Scholar 

  13. Malhi A, Yan R, Gao RX (2011) Prognosis of defect propagation based on recurrent neural networks. IEEE Trans Instrum Meas 60:703–711. https://doi.org/10.1109/TIM.2010.2078296

    Article  Google Scholar 

  14. Gebraeel N, Lawley M, Liu R, Parmeshwaran V (2004) Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans Ind Electron 51:694–700. https://doi.org/10.1109/TIE.2004.824875

    Article  Google Scholar 

  15. Elwany AH, Gebraeel NZ (2008) Sensor-driven prognostic models for equipment replacement and spare parts inventory. IIE Trans 40:629–639. https://doi.org/10.1080/07408170701730818

    Article  Google Scholar 

  16. Medjaher K, Zerhouni N, Baklouti J (2013) Data-driven prognostics based on health indicator construction: application to PRONOSTIA's data. In: European control conference. https://doi.org/10.23919/ECC.2013.6669223

  17. Li H, Li Y, Wang Y, Wang B, Sun J (2017) The application of a general mathematical morphological particle as a novel indicator for the performance degradation assessment of a bearing. Mech Syst Signal Process 82:490–502. https://doi.org/10.1016/j.ymssp.2016.05.038

    Article  Google Scholar 

  18. Singleton RK, Strangas EG, Aviyente S (2015) Extended Kalman filtering for remaining-useful-life estimation of bearings. IEEE Trans Ind Electron 62:1781–1790. https://doi.org/10.1109/TIE.2014.2336616

    Article  Google Scholar 

  19. Ali JB, Fnaiech F, Fnaiech N, Saidi L, Chebel-Morello B (2015) Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl Acoust 89:16–27. https://doi.org/10.1016/j.apacoust.2014.08.016

    Article  Google Scholar 

  20. Ali JB, Chebel-Morello B, Saidi L, Malinowski S, Fnaiech F (2015) Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mech Syst Signal Process 56–57:150–172. https://doi.org/10.1016/j.ymssp.2014.10.014

    Article  Google Scholar 

  21. Loutas TH, Roulias D, Georgoulas G (2013) Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression. IEEE Trans Reliab 62:821–832. https://doi.org/10.1109/TR.2013.2285318

    Article  Google Scholar 

  22. Qian Y, Yan R, Hu S (2014) Bearing degradation evaluation using recurrence quantification analysis and Kalman Filter. IEEE Trans Instrum Meas 63:2599–2610. https://doi.org/10.1109/TIM.2014.2313034

    Article  Google Scholar 

  23. El-Thalji I, Jantunen E (2014) A descriptive model of wear evolution in rolling bearings. Eng Fail Anal 45:204–224. https://doi.org/10.1016/j.engfailanal.2014.06.004

    Article  Google Scholar 

  24. Potts JR, Auger MM, Mokross K, Lewis MA, O'Hara RB (2014) A generalized residual technique for analysing complex movement models using earth mover's distance. Methods Ecol Evol 5:1012–1022. https://doi.org/10.1111/2041-210X.12253

    Article  Google Scholar 

  25. Mumford D (1991) Mathematical theories of shape—do they model perception. In: Conference on geometric methods in computer vision. https://doi.org/10.1117/12.49981

  26. Zheng B, Liu Y, Peng Y, Zhang G (2010) Variational color image segmentation via chromaticity-brightness decomposition. In: 16th international conference multimedia modeling. https://doi.org/10.1007/978-3-642-11301-7_31

  27. Schmitzer B, Schnörr C (2015) Globally optimal joint image segmentation and shape matching based on Wasserstein modes. J Math Imaging Vis 52:436–458. https://doi.org/10.1007/s10851-014-0546-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37:1348–1357. https://doi.org/10.1109/TMI.2018.2827462

    Article  Google Scholar 

  29. Cabello S, Giannopoulos P, Knauer C, Rote G (2008) Matching point sets with respect to the earth mover’s distance. Comput Geom 39:118–133. https://doi.org/10.1016/j.comgeo.2006.10.001

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu M, Jiang X, Absar M, Choi S, Kozak D, Shen M, Weng YT, Zhao L, Lionberger R (2018) Equivalence testing of complex particle size distribution profiles based on earth mover’s distance. AAPS J 20:62. https://doi.org/10.1208/s12248-018-0212-y

    Article  Google Scholar 

  31. Levina E, Bickel PJ (2001) The earth mover's distance is the mallows distance: some insights from statistics. In: 8th IEEE international conference on computer vision. https://doi.org/10.1109/ICCV.2001.937632

  32. Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115. https://doi.org/10.1093/biomet/41.1-2.100

    Article  MathSciNet  MATH  Google Scholar 

  33. Castagliola P, Maravelakis PE (2011) A CUSUM control chart for monitoring the variance when parameters are estimated. J Stat Plan Inference 141:1463–1478. https://doi.org/10.1016/j.jspi.2010.10.013

    Article  MathSciNet  MATH  Google Scholar 

  34. Haq A, Munir W (2018) Improved CUSUM charts for monitoring process mean. J Stat Comput Simul 88:1684–1701. https://doi.org/10.1080/00949655.2018.1444040

    Article  MathSciNet  MATH  Google Scholar 

  35. Dyer D, Stewart RM (1978) Detection of rolling element bearing damage by statistical vibration analysis. J Mech Des 100:229. https://doi.org/10.1115/1.3453905

    Article  Google Scholar 

  36. Yu G, Li C, Zhang J (2013) A new statistical modeling and detection method for rolling element bearing faults based on alpha–stable distribution. Mech Syst Signal Process 41:155–175. https://doi.org/10.1016/j.ymssp.2013.08.015

    Article  Google Scholar 

  37. Ozair S, Lynch C, Bengio Y, Oord AVD, Levine S, Sermanet P (2019) Wasserstein dependency measure for representation learning. arXiv preprint arXiv:1903.11780.

  38. Qiu H, Lee J, Lin J, Yu G (2006) Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J Sound Vib 289:1066–1090. https://doi.org/10.1016/j.jsv.2005.03.007

    Article  Google Scholar 

  39. Nectoux P, Gouriveau R, Medjaher K, Ramasso E, Chebel-Morello B, Zerhouni N, Varnier C (2012). PRONOSTIA: an experimental platform for bearings accelerated degradation tests. In: IEEE international conference on prognostics and health management

  40. Javed K, Gouriveau R, Zerhouni N, Nectoux P (2015) Enabling health monitoring approach based on vibration data for accurate prognostics. IEEE Trans Ind Electron 62:647–656. https://doi.org/10.1109/tie.2014.2327917

    Article  Google Scholar 

  41. Zhang B, Zhang L, Xu J (2016) Degradation feature selection for remaining useful life prediction of rolling element bearings. Qual Reliab Eng Int 32:547–554. https://doi.org/10.1002/qre.1771

    Article  Google Scholar 

  42. Li L, Zhang Y (2018) Route planning based on genetic algorithm. J Math Res 10:122–128. https://doi.org/10.5539/jmr.v10n2p122

    Article  Google Scholar 

  43. Weiddf WU, Chen B, Jianfeng WU, Huang K (2013) Study on reverse deduction of reservoir-inflow based on cubical smoothing algorithm with five-point approximation. Water Resour Hydropower Eng 44:100–102. https://doi.org/10.13928/j.cnki.wrahe.2013.12.028

    Article  Google Scholar 

  44. Ahmad W, Khan SA, Islam MMM, Kim J (2019) A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models. Reliab Eng Syst Safe 184:67–76. https://doi.org/10.1016/j.ress.2018.02.003

    Article  Google Scholar 

  45. Eiset AH, Kirkegaard H, Erlandsen M (2019) Crowding in the emergency department in the absence of boarding—a transition regression model to predict departures and waiting time. BMC Med Res Methodol 19:1–8. https://doi.org/10.1186/s12874-019-0710-3

    Article  Google Scholar 

  46. Saxena A, Celaya J, Balaban E, Goebel K, Saha B, Saha S, Schwabacher M (2008) Metrics for evaluating performance of prognostic techniques. In: 2008 international conference on prognostics and health management. https://doi.org/10.1109/PHM.2008.4711436

  47. Goebel K, Bonissone P (2005) Prognostic information fusion for constant load systems. In: 7th international conference on information fusion. https://doi.org/10.1109/ICIF.2005.1592000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minqiang Xu.

Additional information

Technical Editor: Wallace Moreira Bessa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Xu, M., Zheng, H. et al. A new Wasserstein distance- and cumulative sum-dependent health indicator and its application in prediction of remaining useful life of bearing. J Braz. Soc. Mech. Sci. Eng. 42, 479 (2020). https://doi.org/10.1007/s40430-020-02563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02563-4

Keywords

Navigation