Skip to main content
Log in

Nonlinear vibration analysis of a circular plate–cavity system

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Vibration of plate with air cavity has been one of the interesting research fields by many researchers. This topic has many applications in vehicles, airplanes, aircraft, fuselage panels and buildings. In this study, nonlinear vibroacoustic of circular plate with air cavity under harmonic excitation is investigated. The von Karman theory is used to obtain plate equation and solved together with the air pressure equation. First, the nonlinear equation of the plate is converted to ordinary differential equations by using the Galerkin method. Then the method of multiple scales is employed to solve the corresponding nonlinear equations. Frequency response for primary, subharmonic and superharmonic resonances is studied analytically. Using this method, a parametric study is carried out and the effects of different parameters on the frequency response of the plate are investigated. According to the results, jump phenomena are observed for primary and superharmonic resonance cases. Also, with an increase in damping coefficient, the amplitude of the steady-state response increases in the subharmonic resonance case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

c :

Depth of acoustic enclosure

c a :

Sound speed

c d :

Structural damping coefficient

D :

Bending stiffness

E :

Young’s modulus of elasticity

h :

Thickness

P i :

Acoustic pressure

P E :

External excitation

φ :

Airy stress function

ρ :

Density

ν :

Poisson’s ratio

σ :

Detuning parameter

Ω :

Excitation frequency

ω n :

Natural frequency

References

  1. Lyon RH (1963) Noise reduction of rectangular enclosures with one flexible wall. J Acoust Soc Am 35:1791–1797

    Article  Google Scholar 

  2. Pretlove AJ (1965) Free vibration of a rectangular panel backed by a closed rectangular cavity. J Sound Vib 2(3):197–209

    Article  Google Scholar 

  3. Pretlove AJ (1966) Forced vibration of a rectangular panel backed by a closed rectangular cavity. J Sound Vib 3(3):252–261

    Article  Google Scholar 

  4. Qaisi MI (1988) Free vibrations of a rectangular plate–cavity system. Appl Acoust 24:49–61

    Article  Google Scholar 

  5. Lee YY (2002) Structural-acoustic coupling effect on the nonlinear natural frequency of a rectangular box with one flexible plate. Appl Acoust 63:1157–1175

    Article  Google Scholar 

  6. Xin FX, Lu TJ, Chen CQ (2008) Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity. J Acoust Soc Am 124(6):3604–3612

    Article  Google Scholar 

  7. Luo C, Zhao M, Rao Z (2005) The analysis of structural-acoustic coupling of an enclosure using Green’s function method. Int J Adv Manuf Technol 27:242–247

    Article  Google Scholar 

  8. Lee YY, Guo X, Hui CK, Lau CM (2008) Nonlinear multi-modal structural acoustic interaction between a composite plate vibration and the induced pressure. Int J Nonlinear Sci Numer 9(3):221–228

    Article  MathSciNet  Google Scholar 

  9. Lee YY (2012) Analysis of the nonlinear structural-acoustic resonant frequencies of a rectangular tube with a flexible end using harmonic balance and homotopy perturbation methods. Abstr Appl Anal 2012:1–13

    Google Scholar 

  10. Lee YY, Huang JL, Hui CK, Ng CF (2012) Sound absorption of a quadratic and cubic nonlinearly vibrating curved panel absorber. Appl Math Model 36:5574–5588

    Article  MathSciNet  Google Scholar 

  11. Lee YY, Li QS, Leung AYT, Su RKL (2012) The jump phenomenon effect on the sound absorption of a nonlinear panel absorber and sound transmission loss of a nonlinear panel backed by a cavity. Nonlinear Dyn 69:99–116

    Article  MathSciNet  Google Scholar 

  12. Shi SX, Jin GY, Liu ZGC (2014) Vibro-acoustic behaviors of an elastically restrained double-panel with an acoustic cavity of arbitrary boundary impedance. Appl Acoust 76:431–444

    Article  Google Scholar 

  13. Pirnat M, Čepon G, Boltežar M (2014) Structural–acoustic model of a rectangular plate–cavity system with an attached distributed mass and internal sound source: theory and experiment. J Sound Vib 333:2003–2018

    Article  Google Scholar 

  14. Chen Y, Jin G, Shi S, Liu Z (2014) A general analytical method for vibroacoustic analysis of an arbitrarily restrained rectangular plate backed by a cavity with general wall impedance. J Vib Acoust 136:1–11

    Google Scholar 

  15. Sadri M, Younesian D (2014) Nonlinear free vibration analysis of a plate–cavity system. Thin Wall Struct 74:191–200

    Article  Google Scholar 

  16. Sadri M, Younesian D (2013) Nonlinear harmonic vibration analysis of a plate–cavity system. J Nonlinear Dyn 74:1267–1279

    Article  Google Scholar 

  17. Jalili MM, Emami H (2017) Analytical solution for nonlinear oscillation of workpiece in turning process. Proc Inst Mech Eng Part C J Mech Eng Sci 231:3479–3492

    Article  Google Scholar 

  18. Jalili MM, Fazel R, Abootorabi MM (2017) Simulation of chatter in plunge grinding process with structural and cutting force nonlinearities. Int J Adv Manuf Technol 89:2863–2881

    Article  Google Scholar 

  19. Jalili MM, Hesabi J, Abootorabi MM (2017) Simulation of forced vibration in milling process considering gyroscopic moment and rotary inertia. Int J Adv Manuf Technol 89:2821–2836

    Article  Google Scholar 

  20. Masoomi M, Jalili MM (2016) Non-linear vibration analysis of a 2-DOF railway vehicle model under random rail excitation. P I Mech Eng K-J Mul 231:591–607

    Google Scholar 

  21. Rajalingham C, Bhat RB, Xistris GD (1998) Vibration of circular membrane backed by cylindrical cavity. Int J Mech Sci 40(8):723–734

    Article  Google Scholar 

  22. Lee YY (2003) Insertion loss of a cavity-backed semi-cylindrical enclosure panel. J Sound Vib 259:625–636

    Article  Google Scholar 

  23. Gorman DG, Lee CK, Reese JM, Wek JH (2005) Vibration analysis of a thin circular plate influenced by liquid/gas interaction in a cylindrical cavity. J Sound Vib 279:601–618

    Article  Google Scholar 

  24. Gorman DG, Trendafilova I, Mulholland AJ, Horáček J (2008) Vibration analysis of a circular plate in interaction with an acoustic cavity leading to extraction of structural modal parameters. Thin Wall Struct 46:878–886

    Article  Google Scholar 

  25. Gorman DG, Reese JM, HoraÂcek J, Dedouch K (2008) Vibration analysis of a circular disc backed by a cylindrical cavity. Proc Inst Mech Eng Part C J Mech Eng Sci 215(11):1303–1311

    Article  Google Scholar 

  26. Amabili M (1997) Bulging modes of circular bottom plates in rigid cylindrical containers filled with a liquid. Shock Vib 4:51–68

    Article  Google Scholar 

  27. Amabili M (2001) Vibrations of circular plates resting on a sloshing liquid: solution of the fully coupled problem. J Sound Vib 245:261–283

    Article  Google Scholar 

  28. Jeong KH, Kim KJ (2005) Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid. J Sound Vib 283:153–172

    Article  Google Scholar 

  29. Askari E, Jeong KH, Amabili M (2013) Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface. J Sound Vib 332:3064–3085

    Article  Google Scholar 

  30. Tariverdilo S, Shahmardani M, Mirzapour J, Shabani R (2013) Asymmetric free vibration of circular plate in contact with incompressible fluid. Appl Math Model 37:228–239

    Article  MathSciNet  Google Scholar 

  31. Rdzanek WP, Rdzanek WJ, Szemela K (2016) Sound radiation of the resonator in the form of a vibrating circular plate embedded in the outlet of the circular cylindrical cavity. J Comput Acoust 24:165–183

    Article  MathSciNet  Google Scholar 

  32. Escaler X, De La Torre O (2018) Axisymmetric vibrations of a circular Chladni plate in air and fully submerged in water. J Fluids Struct 82:432–445

    Article  Google Scholar 

  33. Eftekhari SA (2016) Pressure-Based and potential-based differential quadrature procedures for free vibration of circular plates in contact with fluid. Lat Am J Solids Struct 13:610–631

    Article  Google Scholar 

  34. Hasheminejad SM, Shakeri R (2017) Active transient acousto-structural response control of a smart cavity-coupled circular plate system. Arch Acoust 42:273–286

    Article  Google Scholar 

  35. Szemela K (2018) Sound radiation by a cylindrical open cavity with a surface source at the bottom. Arch Acoust 43:49–60

    Google Scholar 

  36. Reddy JN (2007) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  37. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics, 1st edn. Wiley, New Jersey

    Book  Google Scholar 

  38. Nayfeh AH, Mook D (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Jalili.

Additional information

Technical Editor: Wallace Moreira Bessa, D.Sc.

Appendices

Appendix 1

Coefficients of Eq. (12)

$$\mu^{mnpq} = \frac{{\left( {\left[ {\varphi_{q} \left( r \right)\acute{\varphi }_{m} \left( r \right)\acute{\psi }_{np} \left( r \right)} \right]_{0}^{a} - \int_{0}^{a} {\acute{\varphi }_{m} \left( r \right)\acute{\varphi }_{q} \left( r \right) \acute{\psi }_{np} \left( r \right){\text{d}}r} } \right)}}{{\int_{0}^{a} {\left( {\rho h + \rho_{\text{air}} \frac{{J_{0} \left( {kr} \right)\cos \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}{{\sqrt {k^{2} + \lambda^{2} } \sin \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}} \right)} r\varphi_{m}^{2} {\text{d}}r}}$$
(39)
$$c_{m} = \frac{{\mathop \smallint \nolimits_{0}^{a} c_{d} r\varphi_{m}^{2} {\text{d}}r}}{{\mathop \smallint \nolimits_{0}^{a} \left( {\rho h + \rho_{\text{air}} \frac{{J_{0} \left( {kr} \right)\cos (\sqrt {k^{2} + \lambda^{2} } c)}}{{\sqrt {k^{2} + \lambda^{2} } \sin (\sqrt {k^{2} + \lambda^{2} } c)}}} \right)r\varphi_{m}^{2} {\text{d}}r}}$$
(40)
$$\hat{\lambda }_{m}^{4} = \frac{{D\mathop \smallint \nolimits_{0}^{a} \left( {\varphi_{m} \frac{{\partial^{4} \varphi_{m} }}{{\partial r^{4} }} + \frac{2}{r}\varphi_{m} \frac{{\partial^{3} \varphi_{m} }}{{\partial r^{3} }} + \frac{1}{{r^{2} }}\varphi_{m} \frac{{\partial^{2} \varphi_{m} }}{{\partial r^{2} }} + \frac{1}{{r^{3} }}\varphi_{m} \frac{{\partial \varphi_{m} }}{\partial r}} \right){\text{d}}r}}{{\mathop \smallint \nolimits_{0}^{a} \left( {\rho h + \rho_{air} \frac{{J_{0} \left( {kr} \right)\cos \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}{{\sqrt {k^{2} + \lambda^{2} } \sin \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}} \right)r\varphi_{m}^{2} {\text{d}}r}}$$
(41)
$$\hat{P}_{Em} = \frac{{\mathop \smallint \nolimits_{0}^{a} rP_{E} \varphi_{m} \left( r \right){\text{d}}r}}{{\mathop \smallint \nolimits_{0}^{a} \left( {\rho h + \rho_{\text{air}} \frac{{J_{0} \left( {kr} \right)\cos \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}{{\sqrt {k^{2} + \lambda^{2} } \sin \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}} \right)r\varphi_{m}^{2} {\text{d}}r}}$$
(42)
$$\hat{P}_{im} = \frac{{\mathop \smallint \nolimits_{0}^{a} rP_{i} \left( {r, - c,t} \right)\varphi_{m} \left( r \right){\text{d}}r}}{{\mathop \smallint \nolimits_{0}^{a} \left( {\rho h + \rho_{\text{air}} \frac{{J_{0} \left( {kr} \right)\cos \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}{{\sqrt {k^{2} + \lambda^{2} } \sin \left( {\sqrt {k^{2} + \lambda^{2} } c} \right)}}} \right)r\varphi_{m}^{2} {\text{d}}r}}$$
(43)

Appendix 2

Coefficients of Eq. (13)

$$\alpha_{1} = \mu^{1111}$$
(44)
$$\alpha_{2} = \mu^{1112} + \mu^{1121} + \mu^{1211}$$
(45)
$$\alpha_{3} = \mu^{1122} + \mu^{1212} + \mu^{1222}$$
(46)
$$\alpha_{4} = \mu^{1222}$$
(47)

Appendix 3

Substitution of Eq. (30) into (29)

$$\begin{aligned} & D_{0}^{2} w_{13} + \omega_{1}^{2} w_{13} = - 2i(\acute{A}_{1} e^{{i\omega_{1} T_{0} }} + \hat{c}_{1} A_{1} e^{{i\omega_{1} T_{0} }} + - ci\omega_{0} A_{1} ) \\ & \quad + \alpha_{1} (A_{1}^{3} e^{{3i\omega_{1} T_{0} }} + \varLambda_{1}^{3} e^{{3i\varOmega T_{0} }} + \bar{\varLambda }_{1}^{3} e^{{ - 3i\varOmega T_{0} }} \bar{A}_{1}^{3} e^{{ - 3i\omega_{1} T_{0} }} \\ & \quad + 3A_{1}^{2} \bar{A}_{1} e^{{i\omega_{1} T_{0} }} + 3A_{1} \bar{A}_{1}^{2} e^{{ - i\omega_{1} T_{0} }} + 3A_{1} \varLambda_{1}^{2} e^{{i(\omega_{1} + 2\varOmega )T_{0} }} + 3A_{1} \bar{\varLambda }_{2}^{3} e^{{i(\omega_{1} - 2\varOmega )T_{0} }} ) \\ & \quad + \alpha_{2} (A_{1}^{2} A_{2} e^{{i(2\omega_{1} + \omega_{2} )T_{0} }} + \bar{A}_{1}^{2} A_{2} e^{{i( - 2\omega_{1} + \omega_{2} )T_{0} }} ) \\ & \quad + A_{2} \varLambda_{1}^{2} e^{{i(\omega_{2} + 2\varOmega )T_{0} }} + A_{2} \bar{\varLambda }_{1}^{2} e^{{i(\omega_{2} - 2\varOmega )T_{0} }} + 2A_{1} \bar{A}_{1} A_{2} e^{{i\omega_{2} T_{0} }} \\ & \quad + 2A_{1} A_{2} \varLambda_{1} e^{{i(\omega_{2} + \omega_{1} + \varOmega )T_{0} }} + 2A_{1} \bar{\varLambda }_{1} A_{2} e^{{i(\omega_{2} + \omega_{1} - \varOmega )T_{0} }} + 2\bar{A}_{1} \bar{\varLambda }_{1} A_{2} e^{{i(\omega_{2} - \omega_{1} - \varOmega )T_{0} }} \\ & \quad + 2\varLambda_{1} \bar{\varLambda }_{1} A_{2} e^{{i(\omega_{2} )T_{0} }} + \bar{A}_{1}^{2} \bar{A}_{2} e^{{i( - 2\omega_{1} - \omega_{2} )T_{0} }} + 2A_{1}^{2} \bar{A}_{2} e^{{i(2\omega_{1} - \omega_{2} )T_{0} }} \\ & \quad + A_{1}^{2} \bar{A}_{2} e^{{i(2\omega_{1} - \omega_{2} )T_{0} }} + \bar{A}_{1}^{2} \bar{A}_{2} e^{{i( - 2\omega_{1} - \omega_{2} )T_{0} }} + \bar{\varLambda }_{1}^{2} \bar{A}_{2} e^{{i( - \omega_{2} - \varOmega )T_{0} }} \\ & \quad + \bar{\varLambda }_{1}^{2} \bar{A}_{2} e^{{i( - \omega_{2} - 2\varOmega )T_{0} }} + 2A_{1} \bar{A}_{1} \bar{A}_{2} e^{{ - i\omega_{2} T_{0} }} + 2A_{1} \varLambda_{1} \bar{A}_{2} e^{{i( - \omega_{2} + \omega_{1} + \varOmega )T_{0} }} \\ & \quad + 2\bar{A}_{1} \bar{\varLambda }_{1} \bar{A}_{2} e^{{i( - \omega_{2} - \omega_{1} - \varOmega )T_{0} }} + 2\varLambda_{1} \bar{\varLambda }_{1} \bar{A}_{2} e^{{ - i(\omega_{2} )T_{0} }} ) + \alpha_{3} (A_{1} A_{2}^{2} e^{{i(2\omega_{2} + \omega_{1} )T_{0} }} \\ & \quad + A_{1} \bar{A}_{2}^{2} e^{{i(2\omega_{1} - \omega_{2} )T_{0} }} + A_{1} A_{2} \bar{A}_{2} e^{{i\omega_{1} T_{0} }} + \bar{A}_{1} A_{2}^{2} e^{{i(2\omega_{2} - \omega_{1} )T_{0} }} + \bar{A}_{1} \bar{A}_{2}^{2} e^{{i( - 2\omega_{2} - \omega_{1} )T_{0} }} \\ & \quad + 2\bar{A}_{1} A_{2} \bar{A}_{2} e^{{ - i\omega_{1} T_{0} }} + A_{2}^{2} \varLambda_{1} e^{{i(2\omega_{2} + \varOmega )T_{0} }} + 2A_{2} \bar{A}_{2} \varLambda_{1} e^{{i(\varOmega )T_{0} }} \\ & \quad + A_{2}^{2} \bar{\varLambda }_{1} e^{{i(2\omega_{2} - \varOmega )T_{0} }} + \bar{A}_{2}^{2} \bar{\varLambda }_{1} e^{{i( - 2\omega_{2} - \varOmega )T_{0} }} + 2A_{2} \bar{A}_{2} \bar{\varLambda }_{1} e^{{i( - \varOmega )T_{0} }} \\ & \quad + \alpha_{4} (A_{2}^{3} e^{{3i\omega_{2} T_{0} }} + \bar{A}_{2}^{3} e^{{ - 3i\omega_{2} T_{0} }} + A_{2}^{2} \bar{A}_{2} e^{{i\omega_{2} T_{0} }} + 3A_{2} \bar{A}_{2}^{2} e^{{ - i\omega_{2} T_{0} }} ) \\ \end{aligned}$$
(48)
$$\begin{aligned} & D_{0}^{2} w_{23} + \omega_{2}^{2} w_{23} = - 2(\acute{A}_{2} e^{{i\omega_{1} T_{0} }} + \hat{c}_{2} A_{2} e^{{i\omega_{1} T_{0} }} + - ci\omega_{0} A_{1} ) \\ & & \quad + \alpha_{5} (A_{1}^{3} e^{{3i\omega_{1} T_{0} }} + \varLambda_{1}^{3} e^{{3i\varOmega T_{0} }} + \bar{\varLambda }_{1}^{3} e^{{ - 3i\varOmega T_{0} }} \bar{A}_{1}^{3} e^{{ - 3i\omega_{1} T_{0} }} + 3A_{1}^{2} \bar{A}_{1} e^{{i\omega_{1} T_{0} }} \\ & \quad + 3A_{1} \bar{A}_{1}^{2} e^{{ - i\omega_{1} T_{0} }} + 3A_{1} \varLambda_{1}^{2} e^{{i(\omega_{1} + 2\varOmega )T_{0} }} + 3A_{1} \bar{\varLambda }_{2}^{3} e^{{i(\omega_{1} - 2\varOmega )T_{0} }} \\ & \quad + \alpha_{6} (A_{1}^{2} A_{2} e^{{i(2\omega_{1} + \omega_{2} )T_{0} }} + \bar{A}_{1}^{2} A_{2} e^{{i( - 2\omega_{1} + \omega_{2} )T_{0} }} + A_{2} \varLambda_{1}^{2} e^{{i(\omega_{2} + 2\varOmega )T_{0} }} \\ & \quad + A_{2} \bar{\varLambda }_{1}^{2} e^{{i(\omega_{2} - 2\Omega )T_{0} }} + 2A_{1} \bar{A}_{1} A_{2} e^{{i\omega_{2} T_{0} }} + 2A_{1} A_{2} \varLambda_{1} e^{{i(\omega_{2} + \omega_{1} + \varOmega )T_{0} }} \\ & \quad + 2A_{1} \bar{\varLambda }_{1} A_{2} e^{{i(\omega_{2} + \omega_{1} - \varOmega )T_{0} }} + 2\bar{A}_{1} \bar{\varLambda }_{1} A_{2} e^{{i(\omega_{2} - \omega_{1} -\Omega )T_{0} }} + 2\varLambda_{1} \bar{\varLambda }_{1} A_{2} e^{{i(\omega_{2} )T_{0} }} \\ & \quad + 2A_{1}^{2} \bar{A}_{2} e^{{i(2\omega_{1} - \omega_{2} )T_{0} }} + \bar{A}_{1}^{2} \bar{A}_{2} e^{{i( - 2\omega_{1} - \omega_{2} )T_{0} }} + A_{1}^{2} \bar{A}_{2} e^{{i(2\omega_{1} - \omega_{2} )T_{0} }} + \bar{A}_{1}^{2} \bar{A}_{2} e^{{i( - 2\omega_{1} - \omega_{2} )T_{0} }} \\ & \quad + \bar{\varLambda }_{1}^{2} \bar{A}_{2} e^{{i( - \omega_{2} - \varOmega )T_{0} }} + \bar{\varLambda }_{1}^{2} \bar{A}_{2} e^{{i( - \omega_{2} - 2\varOmega )T_{0} }} + 2A_{1} \bar{A}_{1} \bar{A}_{2} e^{{ - i\omega_{2} T_{0} }} + 2A_{1} \varLambda_{1} \bar{A}_{2} e^{{i( - \omega_{2} + \omega_{1} + \varOmega )T_{0} }} \\ & \quad + 2\bar{A}_{1} \bar{\varLambda }_{1} \bar{A}_{2} e^{{i( - \omega_{2} - \omega_{1} - \varOmega )T_{0} }} + 2\varLambda_{1} \bar{\varLambda }_{1} \bar{A}_{2} e^{{ - i(\omega_{2} )T_{0} }} ) + \alpha_{7} (A_{1} A_{2}^{2} e^{{i(2\omega_{2} + \omega_{1} )T_{0} }} ) \\ & \quad + A_{1} \bar{A}_{2}^{2} e^{{i(2\omega_{1} - \omega_{2} )T_{0} }} + A_{1} A_{2} \bar{A}_{2} e^{{i\omega_{1} T_{0} }} + \bar{A}_{1} A_{2}^{2} e^{{i(2\omega_{2} - \omega_{1} )T_{0} }} + \bar{A}_{1} \bar{A}_{2}^{2} e^{{i( - 2\omega_{2} - \omega_{1} )T_{0} }} \\ & \quad + 2\bar{A}_{1} A_{2} \bar{A}_{2} e^{{ - i\omega_{1} T_{0} }} + A_{2}^{2} \varLambda_{1} e^{{i(2\omega_{2} + \varOmega )T_{0} }} + 2A_{2} \bar{A}_{2} \varLambda_{1} e^{{i(\varOmega )T_{0} }} + A_{2}^{2} \bar{\varLambda }_{1} e^{{i(2\omega_{2} - \varOmega )T_{0} }} \\ & \quad + \bar{A}_{2}^{2} \bar{\varLambda }_{1} e^{{i( - 2\omega_{2} - \varOmega )T_{0} }} + 2A_{2} \bar{A}_{2} \bar{\varLambda }_{1} e^{{i( - \varOmega )T_{0} }} ) + \alpha_{8} (A_{2}^{3} e^{{3i\omega_{2} T_{0} }} + \bar{A}_{2}^{3} e^{{ - 3i\omega_{2} T_{0} }} \\ & \quad + A_{2}^{2} \bar{A}_{2} e^{{i\omega_{2} T_{0} }} + 3A_{2} \bar{A}_{2}^{2} e^{{ - i\omega_{2} T_{0} }} ) + P_{02} \cos (\varOmega t) \\ \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anvariyeh, F.S., Jalili, M.M. & Fotuhi, A.R. Nonlinear vibration analysis of a circular plate–cavity system. J Braz. Soc. Mech. Sci. Eng. 41, 66 (2019). https://doi.org/10.1007/s40430-019-1565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1565-6

Keywords

Navigation