Skip to main content
Log in

Numerical experiments of ascending bubbles for fluid dynamic force calculations

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

With the usage of a robust and efficient method, validated with literature data, numerical experiments were developed to analyze isolated rising bubbles and quantify fluid dynamic forces acting on them. An integral method is presented and used for the calculus, allowing the observation of the evolution of the total fluid dynamic force and the momentum rate of change in different types of rising bubbles. Drag coefficients were calculated and compared with literature correlations. Results showed that the present method is qualified to be applied for numerical experiments of isolated rising bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ascher UM, Ruuth SJ, Wetton BT (1997) Implicit-explicit methods for time-dependent pde’s. SIAM J Numer Anal 32:797–823

    Article  Google Scholar 

  2. Baltussen M, Kuipers J, Deen N (2017) Direct numerical simulation of effective drag in dense gas–liquid–solid three-phase flows. Chem Eng Sci 158:561–568

    Article  Google Scholar 

  3. Berger M, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82:64–84

    Article  Google Scholar 

  4. Berger MJ, Rigoutsos I (1991) An algorithm for hyperbolic partial differential equations. IEE Trans Syst Man Cybern 21:1278–1286

    Article  Google Scholar 

  5. Bhaga D, Weber ME (1981) Bubbles in viscous liquids: shapes, wakes and velocities. J Fluid Mech 105:61–85

    Article  Google Scholar 

  6. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MathSciNet  Google Scholar 

  7. Dijkhuizen W, Roghair I, Annaland MVS, Kuipers J (2010) Dns of gas bubbles behaviour using an improved 3D front tracking model—drag force on isolated bubbles and comparison with experiments. Chem Eng Sci 65(4):1415–1426. https://doi.org/10.1016/j.ces.2009.10.021

    Article  Google Scholar 

  8. Fuster D, Bagué A, Boeck T, Moyne LL, Leboissetier A, Popinet S, Ray P, Scardovelli R, Zaleski S (2009) Simulation of primary atomization with an octree adaptive mesh refinement and vof method. Int J Multiph Flow 35(6):550–565. https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.014

    Article  Google Scholar 

  9. Gueyffier D, Li J, Nadim A, Scardovelli S, Zaleski S (1999) Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152:423–456

    Article  Google Scholar 

  10. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  11. Hua J, Lou J (2007) Numerical simulation of bubble rising in viscous liquid. J Comput Phys 222:769–795

    Article  Google Scholar 

  12. Lima RSD (2012) Desenvolvimento e implementação de malhas adaptativas bloco-estruturadas para computação paralela em mecânica dos fluidos. PhD thesis, Universidade Federal de Uberlândia, Uberlândia, MG

  13. Lopez J, Hernandez J, Gomez P, Faura F (2004) A volume of fluid method based on multidimensional advection and spline interface reconstruction. J Comput Phys 195:718–742

    Article  Google Scholar 

  14. Mei R, Lawrence CJ, Klausner JF (1994) A note on the history force on a spherical bubble at finite reynolds number. Phys Fluids 6:418–420

    Article  Google Scholar 

  15. Milne RB (1995) An adaptive level set method. Technical report, Lawrence Berkeley Lab., CA

  16. Nós RL (2007) Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo de fase. PhD thesis, Universidade de São Paulo, São Paulo

  17. Pivello MR (2012) A fully adaptive front-tracking method for the simulation of 3D two-phase flows. PhD thesis, Universidade Federal de Uberlândia, Uberlândia

  18. Popinet S (2009) An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys 228(16):5838–5866

    Article  MathSciNet  Google Scholar 

  19. Roghair I, Baltussen M, Annaland MVS, Kuipers J (2013) Direct numerical simulations of the drag force of bi-disperse bubble swarms. Chem Eng Sci 95:48–53

    Article  Google Scholar 

  20. Roghair I, Lau Y, Deen N, Slagter H, Baltussen M, Annaland MVS, Kuipers J (2011) On the drag force of bubbles in bubble swarms at intermediate and high reynolds numbers. Chem Eng Sci 66(14):3204–3211. https://doi.org/10.1016/j.ces.2011.02.030

    Article  Google Scholar 

  21. Roma AM (1996) A multilevel self adaptive version of the immersed boundary method. PhD thesis, New York University

  22. Scardovelli R, Zaleski S (2003) Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection. Int J Numer Methods Fluids 41(3):251–274

    Article  Google Scholar 

  23. Shirani E, Ashgriz N, Mostaghimi J (2005) Interface pressure calculation based on conservation of momentum for front capturing methods. J Comput Phys 203(1):154–175

    Article  Google Scholar 

  24. Sussman M, Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML (1999) An adaptive level set approach for incompressible two-phase flows. J Comput Phys 148(1):81–124. https://doi.org/10.1006/jcph.1998.6106. http://www.sciencedirect.com/science/article/pii/S002199919896106X

    Article  MathSciNet  Google Scholar 

  25. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions in incompressible two-phase flow. J Comput Phys 114:146–159

    Article  Google Scholar 

  26. Tomiyama A, Kataoka I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubble under normal and micro gravity conditions. JSME Int J Ser B 41:472–479

    Article  Google Scholar 

  27. Tryggvason G, Scardovelli R, Zaleski S (2011) Direct numerical simulations of gas–liquid multiphase flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Villar MM (2007) Análise Numérica Detalhada de Escoamentos Multifásicos Bidimensionais. PhD thesis, Universidade Federal de Uberlândia

  29. Wang Z, Yang J, Koo B, Stern F (2008) A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves. Int J Multiph Flow 293:112–130

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by PETROBRAS (Cooperation Agreements No. 0050.0071368.11.9/4600344971) and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Barbi.

Additional information

Technical Editor: Jader Barbosa Jr., Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbi, F., Pivello, M.R., Villar, M.M. et al. Numerical experiments of ascending bubbles for fluid dynamic force calculations. J Braz. Soc. Mech. Sci. Eng. 40, 519 (2018). https://doi.org/10.1007/s40430-018-1435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1435-7

Keywords

Navigation