Skip to main content
Log in

Microstretch thermoelastic solid with temperature-dependent elastic properties under the influence of magnetic and gravitational field

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this article, propagation of plane waves in generalized microstretch homogeneous isotropic thermoelastic half-space is considered. The elastic modulus is considered as a function having linear relation with the initial temperature. The normal mode method is used to fine exact expression for field variables. The results predicted by both types of Green and Naghdi theory under the presence and absence of magnetic and gravitational field are presented graphically. Influence of temperature-dependent elastic constants is also considered on field variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micropolar solids. Int J Eng Sci 2:1–18

    Article  Google Scholar 

  2. Eringen AC (1966) Linear theory of micropolar elasticity. J Math Mech 15:909–923

    MathSciNet  MATH  Google Scholar 

  3. Eringen AC (1968) Theory of micropolar elasticity. In: Liebowitz H (ed) Fracture, vol. II. Academic Press, New York, pp 621–729

    Google Scholar 

  4. Eringen AC (1971) Micropolar elastic solids with stretch. Ari Kitabevi Matbassi, Istanbul 24:1–18

    Google Scholar 

  5. Eringen AC (1999) Microcontinuum field theories I: foundation and solids. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Iesau D, Nappa L (2001) On the plane strain of microstretch elastic solids. Int J Eng Sci 39:1815–1835

    Article  MathSciNet  MATH  Google Scholar 

  7. Iesau D, Pompei A (1995) On the equilibrium theory of microstretch elastic solids. Int J Eng Sci 33:399–410

    Article  MathSciNet  MATH  Google Scholar 

  8. De Cicco S (2003) Stress concentration effects in microstretch elastic bodies. Int J Eng Sci 41:187–199

    Article  MathSciNet  MATH  Google Scholar 

  9. Eringen AC (1990) Theory of thermo-microstretch elastic solids. Int J Eng Sci 28:1291–1301

    Article  MATH  Google Scholar 

  10. Bofill F, Quintanilla R (1995) Some qualitative results for the linear theory of thermo-microstretch-elastic solids. Int J Eng Sci 33:2115–2125

    Article  MathSciNet  MATH  Google Scholar 

  11. Othman MIA, Said SM (2016) Gravitational effect on the plane waves of a fiber-reinforced medium with temperature dependent properties for two different theories. Iranian J Sci Tech Trans Mech Eng 40(3):223–232

    Article  Google Scholar 

  12. Othman MIA, Jahangir A (2015) Propagation of plane waves of rotating microstretch elastic solid with temperature dependent elastic properties under Green-Naghdi theory. Appl Math Inform Sci 9(6):2963–2972

    Google Scholar 

  13. Green AE, Naghdi PM (1991) A re-examination of the basic postulate of thermo-mechanics. Proc R Soc Lond 432:171–194

    Article  MATH  Google Scholar 

  14. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Thermal Stresses 15:253–264

    Article  MathSciNet  Google Scholar 

  15. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elasticity 31:189–209

    Article  MathSciNet  MATH  Google Scholar 

  16. Roychoudhuri SK, Bandyopadhyay N (2006) Thermoelastic interactions in an infinite elastic solid due to distributed time-dependent heat sources in generalized thermoelasticity III. Comp Math Appl 51:1611–1624

    Article  MATH  Google Scholar 

  17. Koutsawa Y (2017) Multi-coating inhomogeneities approach for composite materials with temperature-dependent constituents under small strain and finite thermal perturbation assumptions. Compos Part B: Eng 112(1):137–147

    Article  Google Scholar 

  18. Kumar R, Garg SK, Ahuja S (2013) Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half space. Latin Am J Solids Struct 10:1081–1108

    Article  Google Scholar 

  19. Othman MIA, Atwa SY, Jahangir A, Khan A (2013) Effect of magnetic field and rotation on generalized thermo-microstretch elastic solid with mode-I crack under the Green Naghdi theory. Comp Math Model 24:566–591

    Article  MathSciNet  MATH  Google Scholar 

  20. Othman MIA, Atwa SY, Jahangir A, Khan A (2015) The effect of gravity on plane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation. Mech Adv Mater Struct 22:945–955

    Article  Google Scholar 

  21. Othman MIA, Atwa SY (2015) 2-D problem of anisotropic rotating thermoelastic half-space under Green-Naghdi theory. J Comp Theor Nanosci 12:3263–3270

    Article  Google Scholar 

  22. Othman MIA (2004) Generalized electromagneto-thermoviscoelastic in case of 2-D thermal shock problem in a finite conducting medium with one relaxation time. Acta Mech 169(1–4):37–51

    Article  MATH  Google Scholar 

  23. Marin M, Baleanu D (2016) On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound Value Probl 1:111

    Article  MathSciNet  MATH  Google Scholar 

  24. Marin M (2016) An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5):1127–1133

    Article  MathSciNet  MATH  Google Scholar 

  25. Marin M (2008) Weak solutions in elasticity of dipolar porous materials. Math Probl Eng 2008(158908):1–8

    Article  MathSciNet  MATH  Google Scholar 

  26. Prafitt VR, Eringen AC (1969) Reflection of plane waves from the flat boundary of a micropolar elastic half-space. J Acoust Soc Am 45:1258–1272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jahangir.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça.

Appendices

Appendix A

$$\begin{array}{*{20}l} {c^{2} = \frac{1}{{\mu_{1} \varepsilon_{0} }},\quad \beta^{2} = \frac{{V_{A}^{2} }}{{c^{2} }} + 1,\quad V_{A}^{2} = \frac{{\mu_{1} H_{0}^{2} }}{\rho },\quad R_{H} = \frac{{V_{A}^{2} }}{{c_{2}^{2} }},\quad \alpha^{2} = 1 + R_{H} a_{0} } \hfill \\ \quad {c_{1}^{2} = \frac{{\left( {\lambda_{2} + 2\mu_{0} + k_{0} } \right)}}{\rho },\quad c_{3}^{2} = \frac{{2\alpha_{0}^{*} \left( {1 - \beta^{*} T_{0} } \right)}}{3\rho j},\quad c_{4}^{2} = \frac{{2\lambda_{3} \left( {1 - \beta^{*} T_{0} } \right)}}{9\rho j},\quad c_{5}^{2} = \frac{{2\lambda_{0}^{*} \left( {1 - \beta^{*} T_{0} } \right)}}{9\rho j},} \hfill \\ \end{array}$$
(A1)
$$\begin{array}{*{20}l} {a_{0} = \frac{{c_{2}^{2} }}{{c_{1}^{2} (1 - \beta^{*} T_{0} )}},\quad a^{\prime}_{0} = \frac{{c_{2}^{2} }}{{c_{1}^{2} }},\quad a_{1} = \frac{{\lambda_{0}^{*} }}{{\lambda_{2} + 2\mu_{0} + k_{0} }},\quad a_{2} = \frac{{\rho c_{2}^{2} }}{{(\mu_{0} + k_{0} )(1 - \beta^{*} T_{0} )}},\quad a_{3} = \frac{{k_{0} }}{{(\mu_{0} + k_{0} )}},} \hfill \\ {a_{4} = \frac{{k_{0} c_{2}^{2} }}{{\gamma_{0} \omega^{*2} }},\quad a_{5} = \frac{{\rho jc_{2}^{2} }}{{\gamma_{0} (1 - \beta^{*} T_{0} )}},\quad a_{6} = \frac{{c_{3}^{2} }}{{c_{2}^{2} }},\quad a_{7} = \frac{{c_{4}^{2} }}{{\omega^{*2} }},\quad a_{8} = \frac{{c_{5}^{2} }}{{\omega^{*2} }},\quad a_{9} = \frac{{2\hat{\gamma }_{1} c_{2}^{2} (1 - \beta^{*} T_{0} )}}{{9\hat{\gamma }_{0} j\omega^{*2} }}.} \hfill \\ \end{array}$$
(A2)

Appendix B

$$\begin{array}{*{20}l} {D = \frac{\text{d}}{{{\text{d}}z}},\quad A_{1} = \alpha^{2} b^{2} + a_{0} \beta^{2} \omega^{2} ,\quad A_{2} = ga_{0} ib,\quad A_{3} = b^{2} + a_{2} \beta^{2} \omega^{2} ,\quad A_{4} = ga_{2} ib,} \hfill \\ {A_{5} = b^{2} + 2a_{4} + a_{5} \omega^{2} ,\quad A_{6} = b^{2} a_{6} + a_{7} + \omega^{2} ,\quad \varepsilon = (\varepsilon_{2} + \varepsilon_{3} \omega ).} \hfill \\ \end{array}$$
(B1)
$$\begin{array}{*{20}l} {H_{1n} = {{\left[ {k_{n}^{4} a_{6} \varepsilon_{1} \omega^{2} - k_{n}^{2} g_{15} - g_{16} } \right]} \mathord{\left/ {\vphantom {{\left[ {k_{n}^{4} a_{6} \varepsilon_{1} \omega^{2} - k_{n}^{2} g_{15} - g_{16} } \right]} {\left[ {k_{n}^{4} a_{6} \varepsilon - k_{n}^{2} g_{13} + g_{14} } \right]}}} \right. \kern-0pt} {\left[ {k_{n}^{4} a_{6} \varepsilon - k_{n}^{2} g_{13} + g_{14} } \right]}},\quad H_{2n} = {{\left[ { - A_{4} \left( {k_{n}^{2} - A_{5} } \right)} \right]} \mathord{\left/ {\vphantom {{\left[ { - A_{4} \left( {k_{n}^{2} - A_{5} } \right)} \right]} {\left[ {k_{n}^{4} - k_{n}^{2} g_{5} + g_{6} } \right]}}} \right. \kern-0pt} {\left[ {k_{n}^{4} - k_{n}^{2} g_{5} + g_{6} } \right]}},} \hfill \\ {H_{3n} = {{\left[ {a_{4} A_{4} \left( {k_{n}^{2} - b^{2} } \right)} \right]} \mathord{\left/ {\vphantom {{\left[ {a_{4} A_{4} \left( {k_{n}^{2} - b^{2} } \right)} \right]} {\left[ {k_{n}^{4} - k_{n}^{2} g_{5} + g_{6} } \right]}}} \right. \kern-0pt} {\left[ {k_{n}^{4} - k_{n}^{2} g_{5} + g_{6} } \right]}},\quad H_{4n} = {{\left[ {a_{8} \left( {k_{n}^{2} - b^{2} } \right) - a_{9} H_{1n} } \right]} \mathord{\left/ {\vphantom {{\left[ {a_{8} \left( {k_{n}^{2} - b^{2} } \right) - a_{9} H_{1n} } \right]} {\left[ {a_{6} k_{n}^{2} - A_{6} } \right]}}} \right. \kern-0pt} {\left[ {a_{6} k_{n}^{2} - A_{6} } \right]}}.} \hfill \\ {H_{5n} = \left( {1 - \beta^{*} T_{0} } \right)\left[ {a_{10} H_{4n} + iba_{11} (ib - k_{n} H_{2n} ) + k_{n} a_{12} (k_{n} + ibH_{2n} ) - H_{1n} } \right],} \hfill \\ {H_{6n} = \left( {1 - \beta^{*} T_{0} } \right)\left[ {a_{10} H_{4n} + k_{n} a_{11} (k_{n} + ibH_{2n} ) + iba_{12} (ib - k_{n} H_{2n} ) - H_{1n} } \right],} \hfill \\ {H_{7n} = \left( {1 - \beta^{*} T_{0} } \right)\left[ { - k_{n} (ib - k_{n} H_{2n} ) - a_{13} ib(k_{n} + ibH_{2n} ) + a_{14} H_{3n} } \right],} \hfill \\ {H_{8n} = \left( {1 - \beta^{*} T_{0} } \right)\left[ { - ib(k_{n} + ibH_{2n} ) - k_{n} a_{13} (ib - k_{n} H_{2n} ) + a_{14} H_{3n} } \right].} \hfill \\ \end{array}$$
(B2)
$$\begin{array}{*{20}l} {A = g_{18} /g_{17} ,\quad B = g_{19} /g_{17} ,\quad C = g_{20} /g_{17} ,\quad E = g_{21} /g_{17} ,\quad F = g_{22} /g_{17} ,\quad g_{1} = \varepsilon_{4} \omega \alpha^{2} - a_{1} \varepsilon_{1} \omega^{2} ,} \hfill \\ {g_{2} = - \varepsilon_{4} \omega A_{1} + a_{1} \varepsilon_{1} \omega^{2} b^{2} ,\quad g_{3} = a_{1} \left( {\varepsilon b^{2} + \omega^{2} } \right) + a^{\prime}_{0} \varepsilon_{4} \omega ,\quad g_{4} = A_{2} \varepsilon_{4} \omega ,\quad g_{5} = A_{3} + A_{5} - a_{3} a_{4} ,\quad g_{6} = A_{3} A_{5} - a_{3} a_{4} b^{2} ,} \hfill \\ {g_{7} = g_{2} - g_{1} g_{5} ,\quad g_{8} = - g_{2} g_{5} + g_{1} g_{6} + g_{4} A_{4} ,\quad g_{9} = g_{2} g_{6} - g_{4} A_{4} A_{5} ,\quad g_{10} = - g_{3} - a_{1} \varepsilon g_{5} ,\quad g_{11} = g_{3} g_{5} + a_{1} \varepsilon g_{6} ,} \hfill \\ {g_{12} = g_{3} g_{6} ,\quad g_{13} = a_{6} \left( {\varepsilon b^{2} + \omega^{2} } \right) + A_{6} \varepsilon ,\quad g_{14} = \varepsilon_{4} a_{9} \omega + A_{6} \left( {\varepsilon b^{2} + \omega^{2} } \right),\quad g_{15} = \varepsilon_{1} a_{6} \omega^{2} b^{2} + A_{6} \varepsilon_{1} \omega^{2} - a_{8} \varepsilon_{4} \omega ,} \hfill \\ {g_{16} = \varepsilon_{4} a_{8} \omega b^{2} - \varepsilon_{1} \omega^{2} A_{6} b^{2} ,\quad g_{17} = \varepsilon \left( {a_{6} g_{1} + a_{1} \varepsilon_{1} \omega^{2} a_{6} } \right),\quad g_{18} = - a_{6} \left( {\varepsilon g_{7} + \varepsilon_{1} \omega^{2} g_{10} } \right) + g_{13} g_{1} + a_{1} \varepsilon g_{15} ,} \hfill \\ {g_{19} = - a_{6} \left( {\varepsilon g_{8} + \varepsilon_{1} \omega^{2} g_{11} } \right) - g_{13} g_{7} + g_{14} g_{1} - a_{1} \varepsilon g_{16} - g_{10} g_{15} ,} \hfill \\ \quad {g_{20} = - a_{6} \varepsilon g_{9} + g_{13} g_{8} - g_{14} g_{7} + g_{10} g_{16} + g_{11} g_{15} + g_{12} a_{6} \varepsilon_{1} \omega^{2} ,\quad g_{21} = - g_{13} g_{9} + g_{14} g_{8} - g_{11} g_{16} + g_{12} g_{15} .} \hfill \\ \end{array}$$
(B3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, M.I.A., Jahangir, A. & Nadia, A. Microstretch thermoelastic solid with temperature-dependent elastic properties under the influence of magnetic and gravitational field. J Braz. Soc. Mech. Sci. Eng. 40, 332 (2018). https://doi.org/10.1007/s40430-018-1204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1204-7

Keywords

Navigation