Skip to main content
Log in

Predicting simulation of flow induced by IPMC oscillation in fluid environment

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work deals with numerical modeling of fluid-structure interactions of a strip-shaped IPMC actuation in an aqueous environment. We consider an electro-chemo-mechanical model to predict the behavior of a strip-shaped IPMC actuation. The flow is predicted using the Navier–Stokes equations. The model is implemented and solved using the finite-element software COMSOL Multiphysics. Numerical simulations of the hydrodynamics induced by the strip-shaped IPMC are carried out for the purpose of novel propulsive actuators that interact with vortex flows to absorb their energy and release it at appropriate phase. The simulation results might be used to determine the effectiveness and application of IPMCs for micro-propulsion mechanisms, IPMC cilia-like structures used for flow actuation and mixing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdelnour K, Mancia E, Peterson SD, Porfiri M (2009) Hydrodynamics of underwater propulsors based on ionic polymer–metal composites: a numerical study. Smart Mater Struct 18(8):085006

    Article  Google Scholar 

  2. Aureli M, Kopman V, Porfiri M (2010) Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans Mechatron 15(4):603–614

    Article  Google Scholar 

  3. Bandyopadhyay PR, Hansen JC (2013) Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control. Scientific reports 3

  4. Carpi F (2010) Electromechanically active polymers. Polym Int 59(3):277–278

    Article  Google Scholar 

  5. Cen L, Erturk A (2013) Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspiration Biomim 8(1):016006

    Article  Google Scholar 

  6. Cha Y, Laut J, Phamduy P, Porfiri M (2016) Swimming robots have scaling laws, too. IEEE/ASME Trans Mechatron 21(1):598–600

    Article  Google Scholar 

  7. Chen Z, Shatara S, Tan X (2010) Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Trans Mechatron 15(3):448–459

    Article  Google Scholar 

  8. Den Toonder JMJ, Broer DJ, Van Dijken AR (2007) Actuator elements for microfluidics, responsive to multiple stimuli (2007). US Patent App. 12/278,417

  9. Ern A, Guermond JL (2013) Theory and practice of finite elements, vol 159. Springer, Berlin

    MATH  Google Scholar 

  10. Facci AL, Porfiri M (2013) Analysis of three-dimensional effects in oscillating cantilevers immersed in viscous fluids. J Fluids Struct 38:205–222

    Article  Google Scholar 

  11. Gazzola M, Argentina M, Mahadevan L (2014) Scaling macroscopic aquatic locomotion. Nat Phys 10(10):758–761

    Article  Google Scholar 

  12. Hubbard JJ, Fleming M, Palmre V, Pugal D, Kim KJ, Leang KK (2014) Monolithic ipmc fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J Ocean Eng 39(3):540–551

    Article  Google Scholar 

  13. Kim B, Kim DH, Jung J, Park JO (2005) A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater Struct 14(6):1579

    Article  Google Scholar 

  14. Lei H, Li W, Tan X (2012) Microfabrication of IPMC cilia for bio-inspired flow sensing. In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD 2012), vol. 8340. p 83401

  15. Multiphysics C (2013) Comsol multiphysics reference manual

  16. Nardinocchi P, Pezzulla M, Placidi L (2011) Thermodynamically based multiphysic modeling of ionic polymer metal composites. J Intell Mater Syst Struct 22:1887–1897

    Article  Google Scholar 

  17. Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer–metal composites. J Appl Phys 92(5):2899–2915

    Article  Google Scholar 

  18. Phamduy P, Vazquez MA, Kim C, Mwaffo V, Rizzo A, Porfiri M (2017) Design and characterization of a miniature free-swimming robotic fish based on multi-material 3d printing. Intl J Intell Robot Appl 1(2):209–223

    Article  Google Scholar 

  19. Phamduy P, Vazquez MA, Kim C, Mwaffo V, Rizzo A, Porfiri M (2017) Design and characterization of a miniature free-swimming robotic fish based on multi-material 3d printing. Intl J Intell Robot Appl 1:1–15. https://doi.org/10.1007/s41315-017-0012-z

    Article  Google Scholar 

  20. Raj A, Thakur A (2016) Fish-inspired robots: design, sensing, actuation, and autonomy-a review of research. Bioinspiration Biomim 11(3):031001

    Article  Google Scholar 

  21. Shahinpoor M (2015) Ionic polymer metal composites (IMPCs): Smart multi–functional materials and artificial muscles, vol 2. Royal Society of Chemistry

  22. Tsugawa MA, Palmre V, Carrico JD, Kim KJ, Leang KK (2015) Slender tube-shaped and square rod-shaped ipmc actuators with integrated sensing for soft mechatronics. Meccanica 50(11):2781–2795

    Article  Google Scholar 

  23. Vohnout S, Kim SM, Park IS, Banister M, Tiwari R, Kim KJ (2007) IPMC-assisted miniature disposable infusion pumps with embedded computer control. In: The 14th International symposium on: smart structures and materials and nondestructive evaluation and health monitoring. International Society for Optics and Photonics, pp 65241U–65241U

  24. Wang J, McDaid AJ, Lu CZ, Aw KC (2017) A compact ionic polymer–metal composite (IPMC) actuated valveless pump for drug delivery. IEEE/ASME Trans Mechatron 22(1):196–205

    Article  Google Scholar 

  25. Chae W, Cha Y, Peterson SD, Porfiri M (2015) Flow measurement and thrust estimation of a vibrating ionic polymer metal composite. Smart Mater Struct 24:095018

    Article  Google Scholar 

  26. Yeom SW, Oh IK (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater Struct 18(8):085002

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. B. da Cruz.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, H.F., da Cruz, A.G.B., Ranjbarzadeh, S. et al. Predicting simulation of flow induced by IPMC oscillation in fluid environment. J Braz. Soc. Mech. Sci. Eng. 40, 203 (2018). https://doi.org/10.1007/s40430-018-1097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1097-5

Keywords

Navigation