Skip to main content
Log in

Existence regime of symmetric and asymmetric Taylor vortices in wide-gap spherical Couette flow

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

We study the existence regime of symmetric and asymmetric Taylor vortices in wide-gap spherical Couette flow by time marching the three-dimensional incompressible Navier–Stokes equations numerically. Three wide-gap clearance ratios, \(\beta =\left( R_{2}-R_{1}\right) /R_{1}=0.33\), 0.38 and 0.42 are investigated for a range of Reynolds numbers respectively. Using the 1-vortex flow for clearance ratio \(\beta =0.18\) at Reynolds number \({Re}=700\) as the initial conditions and suddenly increasing \(\beta\) to the target value, we can compute Taylor vortices for the three wide gaps. For \(\beta =0.33\), Taylor vortices exist in the range \(450\le {Re}\le 2050\). With increasing Re the steady symmetric 1-vortex flow becomes steady asymmetric at \({Re}=1850\), and then become periodic at \({Re}=2000\). When \({Re}>2050\) the flow returns back to the steady basic flow state with no Taylor vortices. For \(\beta =0.38\), Taylor vortices can exist in the range \(500\le {Re}\le 1400\). With increasing Re, the steady symmetric 1-vortex flow become steady asymmetric at \({Re}=1200\), and then the flow evolves into the steady basic flow for \({Re}>1400\). For \(\beta =0.42\), Taylor vortices can exist in the range \(650\le {Re}\le 1300\). With increasing Re, steady asymmetric Taylor vortices occur at \({Re}=1150\), and then the flow evolves into the steady basic flow for \({Re}>1300\). The present numerical results are in good agreement with available numerical and experimental results. Furthermore, the existence regime of Taylor vortices in the \((\beta ,{Re})\) plane for \(\beta \ge 0.33\) and the three-dimensional transition process from periodic asymmetric vortex flow to steady basic flow with increasing Re are presented for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

J :

 Determinant of coordinate transformation Jacobian

p :

 Pressure

\(R_{1}\) :

 Radius of inner sphere

\(R_{2}\) :

 Radius of outer sphere

\(r, \theta , \phi\) :

 Spherical coordinates

\({Re}=\Omega R_{1}^{2}/\nu\) :

 Reynolds number

\({Re}_{\mathrm{c}}\) :

 Critical Reynolds number

t :

 Physical time

UVW :

 Contra-variant velocity components

\(\alpha\) :

 Artificial compressibility factor

\(\beta = \left( R_{2}-R_{1}\right) /R_{1}\) :

 Clearance ratio

\(\beta _{\text{W}}\) :

 Lower bound value for wide-gap clearance ratio

\(\nu\) :

 Kinematic viscosity

\(\tau\) :

 Pseudo time

\(\omega _\phi\) :

 Azimuthal vorticity component

\(\Omega\) :

 Angular velocity

References

  1. Roesner KG (1978) Numerical calculation of hydrodynamic stability problems with time-dependent boundary conditions. In: Proceedings of the international conference on numerical methods in fluid dynamics, pp 1–25

  2. Wimmer M (1988) Viscous flow and instabilities near rotating bodies. Prog Aerosp Sci 25:43–103

    Article  Google Scholar 

  3. Sha W, Nakabayashi K (2001) On the structure and formation of spiral Taylor–Gortler vortices in spherical Couette flow. J Fluid Mech 431:323–345

    Article  MATH  Google Scholar 

  4. Yuan L (2012) Numerical investigation of wavy and spiral Taylor–Gortler vortices in medium spherical gaps. Phys Fluids 24:124104

    Article  Google Scholar 

  5. Yuan L (2004) Numerical study of multiple periodic flow states in spherical Taylor–Couette flow. Sci China Ser A 4:81–91

    Article  Google Scholar 

  6. Yuan L, Fu DX, Ma YW (1996) Numerical study of bifurcation solutions of spherical Taylor–Couette flow. Sci China Ser A 39(2):187–196

    MATH  Google Scholar 

  7. Marcus P, Tuckerman L (1987) Simulation of flow between two concentric rotating spheres Part 1: steady states. Fluid Mech 185:1–30

    Article  MATH  Google Scholar 

  8. Marcus P, Tuckerman L (1987) Simulations of flow between two concentric rotating spheres. Part 2: transitions. Fluid Mech 185:31–65

    Article  MATH  Google Scholar 

  9. Schrauf G (1986) The first instability in spherical Couette flow. J Fluid Mech 166:287–303

    Article  MATH  Google Scholar 

  10. Buhler K, Zierep J (1987) Dynamical instabilities and transition to turbulence in spherical gap flows. In: Comte-Bellot G, Mathieu J (eds) Proceedings of the 1st European turbulence conference on advances in turbulence, vol 16. Springer, Berlin

  11. Bartels F (1982) Taylor vortices between two-concentric rotating spheres. J Fluid Mech 119:1–65

    Article  MATH  Google Scholar 

  12. Yavorskaya I, Belyaev Y, Monakhov A, Astaf N, Scherbakov S, Vvedenskaya N (1980) Stability, nonuniqueness and transition to turbulence in the flow between two rotating spheres. Report No. 595, Space Research Institute of the Academy of Science. USSR

  13. Wimmer M (1976) Experiments on a viscous fluid flow between concentric rotating spheres. J Fluid Mech 78:317–335

    Article  Google Scholar 

  14. Munson B, Menguturk M (1975) Viscous incompressible flow between concentric rotating spheres. Part 3. Linear stability. J Fluid Mech 69:281–318

    Article  MATH  Google Scholar 

  15. Sawatzki O, Zierep J (1970) Das Stromfeld im Spalt zwichen zwei konzentrischen Kulgelflachen, von denen die innere rotiert. Acta Mech 9:13–35

    Article  Google Scholar 

  16. Nakabayashi K (1983) Transition of Taylor–Gortler vortex flow in spherical Couette flow. J Fluid Mech 132:209–230

    Article  Google Scholar 

  17. Nakabayashi K, Tsuchida Y (1995) Flow-history effect on higher modes in the spherical Coutte flow. J Fluid Mech 295:43–60

    Article  Google Scholar 

  18. Zikanov O (1996) Symmetry-breaking bifurcations in spherical Couette flow. J Fluid Mech 310:293–324

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahloul M, Mahamdia A, Kristiawan A (2016) The spherical Taylor–Couette flow. Eur J Mech B/Fluids 59:1–6

    Article  Google Scholar 

  20. Mahloul M, Mahamdia A, Kristiawan A (2016) Experimental investigations of the spherical Taylor–Couette flow. J Appl Fluid Mech 9:131–137

    Article  Google Scholar 

  21. Lalaoua A, Bouabdallah A (2016) A numerical investigation on the onset of the various flow regimes in a spherical annulus. J Fluids Eng 138:1–11

    Google Scholar 

  22. Child A, Hollerbach R, Kersale E (2017) Axisymmetric pulse train solutions in narrow-gap spherical Couette flow. Phys D 348:54–59

    Article  MathSciNet  MATH  Google Scholar 

  23. Wulf P, Egbers C, Rath HJ (1999) Routes to chaos in wide-gap spherical Couette flow. Phys Fluids 11:1359–1372

    Article  MathSciNet  MATH  Google Scholar 

  24. Egbers C, Rath HJ (1995) The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech 111:125–140

    Article  Google Scholar 

  25. Hollerbach R, Junk M, Egbers C (2006) Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid Dyn Res 38:257–273

    Article  MathSciNet  MATH  Google Scholar 

  26. Dumas G (1991) Study of spherical Couette flow via 3D spectral simulations: large and narrow gap flows and their transitions. Ph.D. Thesis, California Institute of Technology

  27. Dumas G, Leonard A (1994) A divergence-free spectral expansions method for three-dimensional flows in spherical-gap geometries. J Comput Phys 111:205–219

    Article  MathSciNet  MATH  Google Scholar 

  28. Araki K, Mizushima J, Yanase S (1997) The nonaxisymmetric instability of the wide-gap spherical Couette flow. Phys Fluids 9:1197–1199

    Article  Google Scholar 

  29. Junk M, Egbers C (2000) Isothermal spherical Couette flow. In: Egbers C, Pfister G (eds) Physics of rotating fluids. Lecture notes in physics, vol 549. Springer, Berlin, pp 215–235

  30. Hollerbach R (1998) Time-dependent taylor vortices in wide-gap spherical Couette flow. Phys Rev Lett 81:31–32

    Article  Google Scholar 

  31. Liu M, Blohm C, Egber C, Wulf P, Rath HJ (1996) Taylor vortices in wide spherical shell. Phys Rev Lett 77:286

    Article  Google Scholar 

  32. Loukopoulos C, Karahalios T (2004) Taylor vortices in annular spherical flow at large aspect ratios. Phys Fluids 16:2708–2711

    Article  MATH  Google Scholar 

  33. Abbas S, Yuan L, Shah, A (2017) Simulation of spiral instabilities in wide-gap spherical Couette flow. Fluid Dyn Res. https://doi.org/10.1088/1873-7005/aa9d77

  34. Nakabayashi K, Tsuchida Y, Zheng Z (2002) Characteristics of disturbances in the laminar-turbulent transition of spherical Couette flow. 1. Spiral Taylor–Gortler vortices and traveling waves for narrow gaps. Phys Fluids 14(11):3963–3972

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhilenko DY, Krivonosova OE, Nikitin NV (2007) Direct numerical simulation of the laminar-turbulent transition in a thick spherical layer. Fluid Dyn 42(6):886–896

    Article  MATH  Google Scholar 

  36. Yang JY, Yang SC, Chen YN, Hsu CA (1998) Implicit weighted ENO schemes for three-dimensional incompressible Navier–Stokes equations. J Comput Phys 146:464–487

    Article  MATH  Google Scholar 

  37. Rogers S, Kwak D (1990) Upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations. AIAA J 28:253

    Article  MATH  Google Scholar 

  38. Rogers S, Kwak D, Kiris C (1991) Steady and unsteady solutions of the incompressible Navier–Stokes equations. AIAA J 29:603–610

    Article  Google Scholar 

  39. Shah A, Yuan L, Islam S (2012) Numerical solution of unsteady Navier–Stokes equations on curvilinear meshes. Comput Maths Appl 63:1548–1556

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuan L (2002) Comparison of implicit multigrid schemes for three-dimensional incompressible flows. J Comput Phys 77:134–155

    Article  MathSciNet  MATH  Google Scholar 

  41. Chorin A (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2:12–26

    Article  MATH  Google Scholar 

  42. Jiang GS, Wu CC (1999) A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J Comput Phys 150:561–594

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (11321061, 11261160486, and 91641107), and Fundamental Research of Civil Aircraft (MJ-F-2012-04). Suhail Abbas thanks the support of CAS-TWAS President’s Fellowship Program to finance his PhD in University of Chinese Academy of Sciences, Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yuan.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S., Yuan, L. & Shah, A. Existence regime of symmetric and asymmetric Taylor vortices in wide-gap spherical Couette flow. J Braz. Soc. Mech. Sci. Eng. 40, 154 (2018). https://doi.org/10.1007/s40430-018-1077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1077-9

Keywords

Navigation