Skip to main content
Log in

Effect of metal oxide nanoparticles on the ignition characteristics of diesel fuel droplets: an experimental study

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study experimentally investigates the effect of metal oxide nanoparticles on the ignition probability, ignition zone, and burning time of the diesel fuel. For this purpose, a series of hot plate ignition tests are conducted on the diesel fuel droplets with and without nanoparticles. The comparative performances of the pure diesel and diesel fuel containing 0.03 and 0.05 wt% of Al2O3, CeO2, Fe3O4, and TiO2 nanoparticles are examined. The thermo-physical properties of the nanofuels, including thermal conductivity, viscosity, and heat capacity are also measured. The experimental results show that in the presence of metal oxide nanoparticles, the ignition probability significantly increases. It is observed that cerium oxide nanoparticles show the greatest effect on the ignition probability. In addition, it is found that the minimum hot plate ignition temperature decreases. Results show that the burning time and the ignition zone decrease by adding metal oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Petrou EC, Pappis CP (2009) Biofuels: a survey on pros and cons. Energy Fuels 23(2):1055–1066

    Article  Google Scholar 

  2. Luque R, Lovett JC, Datta B, Clancy J, Campelo JM, Romero AA (2010) Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ Sci 3(11):1706–1721

    Article  Google Scholar 

  3. Basu S, Miglani A (2016) Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review. Int J Heat Mass Transf 96:482–503

    Article  Google Scholar 

  4. Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(2):1819–1838

    Article  Google Scholar 

  5. Chehroudi B (2011) Nanotechnology and applied combustion: use of nanostructured materials for light-activated distributed ignition of fuels with propulsion applications. Recent Pat Space Technol 1(2):107–122

    Article  Google Scholar 

  6. Jones M, Li CH, Afjeh A, Peterson G (2011) Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol). Nanoscale Res Lett 6(1):1–12

    Article  Google Scholar 

  7. Gan Y, Qiao L (2011) Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust Flame 158(2):354–368

    Article  Google Scholar 

  8. Gan Y, Lim YS, Qiao L (2012) Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combust Flame 159(4):1732–1740

    Article  Google Scholar 

  9. Tanvir S, Qiao L (2014) Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels. J Propul Power 31(1):408–415

    Article  Google Scholar 

  10. Javed I, Baek SW, Waheed K (2015) Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures. Combust Flame 162(1):191–206

    Article  Google Scholar 

  11. Ooi JB, Ismail HM, Swamy V, Wang X, Swain AK, Rajanren JR (2016) Graphite oxide nanoparticles as diesel fuel additive for cleaner emissions and lower fuel consumption. Energy Fuels 30(2):1341–1353

    Google Scholar 

  12. Xiong T, Yuen M (1991) Evaporation of a liquid droplet on a hot plate. Int J Heat Mass Transf 34(7):1881–1894

    Article  Google Scholar 

  13. Michael Bennett J (2001) Ignition of combustible fluids by heated surfaces. Process Saf Prog 20(1):29–36

    Article  Google Scholar 

  14. Colwell JD, Reza A (2005) Hot surface ignition of automotive and aviation fluids. Fire Technol 41(2):105–123

    Article  Google Scholar 

  15. Shaw A, Epling W, McKenna C, Weckman B (2010) Evaluation of the ignition of diesel fuels on hot surfaces. Fire Technol 46(2):407–423

    Article  Google Scholar 

  16. Arifin YM, Furuhata T, Saito M, Arai M (2008) Diesel and bio-diesel fuel deposits on a hot surface. Fuel 87(8):1601–1609

    Article  Google Scholar 

  17. Arifin YM, Arai M (2010) The effect of hot surface temperature on diesel fuel deposit formation. Fuel 89(5):934–942

    Article  Google Scholar 

  18. Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, Arentzen P (2008) Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett 8(5):1410–1416

    Article  Google Scholar 

  19. Huang Z, Kan W, Lu Y, Cheng T, Yu L, Hu X (2014) Effect of nanoparticle suspensions on liquid fuel hot-plate ignition. J Nanotechnol Eng Med 5(3):031004

    Article  Google Scholar 

  20. Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, Morin J-P, Guest R, Jenkinson P, Samaras Z (2008) Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—a case study. Inhalation Toxicol 20(6):547–566

    Article  Google Scholar 

  21. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41(12):2699–2711

    Article  Google Scholar 

  22. Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health, Part A 43(3):278–284

    Article  Google Scholar 

  23. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  Google Scholar 

  24. Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA, Tanguay RL (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715. https://doi.org/10.1016/j.toxrep.2015.03.015

    Article  Google Scholar 

  25. Sharma S, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Thermal Fluid Sci 79:202–212

    Article  Google Scholar 

  26. Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1

    Google Scholar 

  27. Wheeler AJ, Ganji AR (1996) Introduction to engineering experimentation. Prentice Hall Englewood Cliffs, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moghiman.

Additional information

Technical Editor: André Cavalieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, Z., Moghiman, M. Effect of metal oxide nanoparticles on the ignition characteristics of diesel fuel droplets: an experimental study. J Braz. Soc. Mech. Sci. Eng. 40, 75 (2018). https://doi.org/10.1007/s40430-018-1010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1010-2

Keywords

Navigation