Skip to main content
Log in

Classification and mitigation of uncertainty as per the product design stages: framework and case study

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Product design undergoes various stages and each stage requires valid inputs to obtain the desired output(s). Many times, the inputs that are provided are inaccurate or uncertain. Further, the design of a new product normally starts with a limited knowledge and not properly defined targets to convert an idea or concept into a marketable product. The complex and dynamic nature of design leads to uncertainty, which makes taking the right decision critical. Thus, it is felt that there is a serious need to handle uncertainties during product design. This work analyses the sources of uncertainty that may creep in the product design process during different design stages. Besides, it also illustrates the taxonomy of uncertainty and the tools that might be used to mitigate the uncertainty during each design stage. The paper validates the approach with the help of a design example. It is felt that the designers may benefit from this work as they can identify what type of uncertainty may come upon during a particular stage of the design process, along with the tool that can be used to handle the uncertainty in an effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basson L, Petrie JG (2007) An integrated approach for the consideration of uncertainty in decision making supported by Life Cycle Assessment. Environ Model Softw 22(2):167–176

    Article  Google Scholar 

  2. Rodriguez MA, Vecchietti A (2012) Mid-term planning optimization model with sales contracts under demand uncertainty. Comput Chem Eng 47:227–236

    Article  Google Scholar 

  3. Suss S, Thomson V (2012) Optimal design processes under uncertainty and reciprocal dependency. J Eng Des 23:829–851

    Article  Google Scholar 

  4. Fernandes J, Henriques E, Silva A, Moss MA (2014) A method for imprecision management in complex product development. Res Eng Des 25(4):309–324

    Article  Google Scholar 

  5. Chandrasegaran SK, Ramani K, Sriram RD, Horváth I, Bernard A, Harik RF, Gao W (2013) The evolution, challenges, and future of knowledge representation in product design systems. Comput Aided Des 45(2):204–228

    Article  Google Scholar 

  6. Cabantous L, Hilton D, Kunreuther H, Michel-Kerjan Erwann (2011) Is imprecise knowledge better than conflicting expertise? Evidence from insurers’ decisions in the United States. J Risk Uncertain 42:211–232

    Article  Google Scholar 

  7. Wood KL, Antonsson EK, Beck JL (1990) Representing imprecision in engineering design: comparing fuzzy and probability calculus. Res Eng Des 1(3–4):187–203

    Article  Google Scholar 

  8. Antonsson EK, Otto KN (1995) Imprecision in engineering design. J Mech Des 117(B):25–32

    Article  Google Scholar 

  9. Gollier C, Weikard HP, Wesseler J (2004) Introduction: risk and uncertainty in environmental and resource economics. J Risk Uncertain 29(1):5–6

    Article  Google Scholar 

  10. Browning TR, Deyst JJ, Eppinger SD, Whitney DE (2002) Adding value in product development by creating information and reducing risk. Eng Manag IEEE Trans 49(4):443–458

    Article  Google Scholar 

  11. Cooper L (2003) A research agenda to reduce risk in new product development through knowledge management: a practitioner perspective. J Eng Tech Manag 20(1–2):117–140

    Article  Google Scholar 

  12. Lough KG, Stone R, Tumer IY (2009) The risk in early design method. J Eng Des 20(2):155–173

    Article  Google Scholar 

  13. Unger D, Eppinger S (2011) Improving product development process design: a method for managing information flows, risks, and iterations. J Eng Des 22(10):689–699

    Article  Google Scholar 

  14. Chalupnik MJ, Wynn DC, Clarkson PJ (2013) Comparison of ilities for protection against uncertainty in system design. J Eng Des 24(12):814–829

    Article  Google Scholar 

  15. Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 47(6):450–479

    Article  Google Scholar 

  16. Lutz E, Werner M, Jahn A (2012) Satellite systems for personal and broadband communications. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  17. Brown SF (2004) Toyota’s global body shop. Fortune Mag 149(3):120–123

    Google Scholar 

  18. Ricks TE (2004) General reported shortages in Iraq, Washington Post, October 18, 2004. http://www.washingtonpost.com/wp-dyn/articles/A40321-2004Oct17.html. Accessed 13 Apr 2016

  19. BBC News (1999) Business: The Economy Banana trade war looms, Tuesday, January 12, 1999. http://news.bbc.co.uk/2/hi/business/253705.stm. Accessed 13 Apr 2016

  20. Vesely WE, Rasmuson DM (1984) Uncertainties in nuclear probabilistic risk analyses. Risk Anal 4(4):313–322

    Article  Google Scholar 

  21. Wang JX, Roush ML (2000) What every engineer should know about risk engineering and management. Marcel Dekker, New York

    Google Scholar 

  22. NASA (2002) Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, Version 1.1. NASA, August (2002). http://www.barringer1.com/mil_files/NASA-PRA-1.1.pdf. Accessed 13 Apr 2016

  23. Crossland R, Williams JHS, McMahon CA (2003) An object-oriented modeling framework for representing uncertainty in early variant design. Res Eng Des 14(3):173–183

    Article  Google Scholar 

  24. Clarkson J, Eckert C (eds) (2005) Design process improvement: a review of current practice. Springer, London

  25. US Nuclear Regulatory Commission (2009) Guidance on the treatment of uncertainties associated with PRAs in risk-informed decision making (NUREG-1855). https://kscddms.ksc.nasa.gov/Reliability/Documents/Uncertainties_Treatment_of_NUREG1855_vol%201.pdf. Accessed 13 Apr 2016

  26. Wheelwright SC (1992) Revolutionizing product development: quantum leaps in speed, efficiency, and quality. Simon and Schuster, New York

    Google Scholar 

  27. Anderson DM, Pine J (1996) Agile product development for mass customization: how to develop and deliver products for mass customization. Irwin Professional Publishing, Chicago

    Google Scholar 

  28. Ulrich KT (2003) Product design and development. Tata McGraw-Hill Education, Chennai

    Google Scholar 

  29. Heping P, Xiangqian J (2009) Evaluation and management procedure of measurement uncertainty in new generation geometrical product specification (GPS). Measurement 42(5):653–660

    Article  Google Scholar 

  30. Bell S (1999) A beginner’s guide to uncertainty of measurement. Teddington, Middlesex: National Physical Laboratory. https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/UK_NPL/mgpg11.pdf. Accessed 17 Apr 2016

  31. Kraus UG, Yano CA (2003) Product line selection and pricing under a share-of-surplus choice model. Eur J Oper Res 150(3):653–671

    Article  MATH  MathSciNet  Google Scholar 

  32. Tsafarakis S, Marinakis Y, Matsatsinis N (2011) Particle swarm optimization for optimal product line design. Int J Res Mark 28(1):13–22

    Article  Google Scholar 

  33. Lin KH, Shih LH, Cheng YT, Lee SC (2011) Fuzzy product line design model while considering preference uncertainty: a case study of notebook computer industry in Taiwan. Expert Syst Appl 38(3):1789–1797

    Article  Google Scholar 

  34. Li H, Azarm S (2000) Product design selection under uncertainty and with competitive advantage. J Mech Des 122(4):411–418

    Article  Google Scholar 

  35. Suh ES, De Weck OL, Chang D (2007) Flexible product platforms: framework and case study. Res Eng Des 18(2):67–89

    Article  Google Scholar 

  36. Chuang C-L, Chiang T-A, Che ZH, Wang H-S (2009) Using DEA and GA algorithm for finding an optimal design chain partner combination. In: Proceedings, the 16th ISPE international conference on concurrent engineering: research and applications. Taipei, July 20–24

  37. Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Saf 85(1):281–294

    Article  Google Scholar 

  38. Li Y, Jiang P, Gao L, Shao X (2013) Sequential optimisation and reliability assessment for multidisciplinary design optimisation under hybrid uncertainty of randomness and fuzziness. J Eng Des 24(5):363–382

    Article  Google Scholar 

  39. Cheng L, Subrahmanian E, Westerberg AW (2003) Design and planning under uncertainty: issues on problem formulation and solution. Comput Chem Eng 27:781–801

    Article  Google Scholar 

  40. Delage E, Mannor S (2010) Percentile optimization for Markov decision processes with parameter uncertainty. Oper Res 58(1):203–213

    Article  MATH  MathSciNet  Google Scholar 

  41. Delage E, Mannor S (2007) Percentile optimization in uncertain Markov decision processes with application to efficient exploration. In: Proceedings of the 24th international conference on machine learning, Corvallis, OR

  42. Besharati B, Azarm S, Kannan PK (2006) A decision support system for product design selection: a generalized purchase modeling approach. Decis Support Syst 42:333–350

    Article  Google Scholar 

  43. Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design: a systematic approach, vol 157. Springer, New York

    Book  Google Scholar 

  44. Moullec ML, Bouissou M, Jankovic M, Bocquet JC, Réquillard F, Maas O, Forgeot O (2013) Toward system architecture generation and performances assessment under uncertainty using bayesian networks. J Mech Des 135(4):041002

    Article  Google Scholar 

  45. Rayamajhi M, Hunkeler S, Duddeck F (2014) Geometrical compatibility in structural shape optimisation for crashworthiness. Int J Crashworthiness 19(1):42–56

    Article  Google Scholar 

  46. Gallopin GC (1981) The abstract concept of environment. Int J Gen Syst 7(2):139–149

    Article  MATH  Google Scholar 

  47. Brown JD, Heuvelink G (2007) The Data Uncertainty Engine (DUE): a software tool for assessing and simulating uncertain environmental variables. Comput Geosci 33(2):172–190

    Article  Google Scholar 

  48. Goovaerts P (2001) Geostatistical modelling of uncertainty in soil science. Geoderma 103(1):3–26

    Article  Google Scholar 

  49. Caers J (2005) Petroleum geostatistics. SPE interdisciplinary primer series. Society of Petroleum Engineers, Richardson, p 96

    Google Scholar 

  50. McManus H, Hastings D (2006) A framework for understanding uncertainty and its mitigation and exploitation in complex systems. IEEE Eng Manag Rev 34(3):81–94

    Article  Google Scholar 

  51. Aurisicchio M, Bracewell R (2013) Capturing an integrated design information space with a diagram-based approach. J Eng Des 24(6):397–428

    Article  Google Scholar 

  52. Molcho G, Zipori Y, Schneor R, Rosen O, Goldstein D, Shpitalni M (2008) Computer aided manufacturability analysis: closing the knowledge gap between the designer and the manufacturer. CIRP Ann Manuf Technol 57:153–158

    Article  Google Scholar 

  53. Wang JX, Ma LM, Jiang XQ, Xu ZG, Li Z (2004) A framework for uncertainty evaluation of GPS standard-chain. In: Proc. ASPE 2004 summer topical meeting on uncertainty analysis in measurement and design, pp 146–151

  54. Filippi S, Cristofolini I (2007) The design guidelines (DGLs), a knowledge-based system for industrial design developed accordingly to ISO-GPS (Geometrical Product Specifications) concepts. Res Eng Des 18(1):1–19

    Article  Google Scholar 

  55. Dantan J-Y, Ballub A, Luc M (2008) Geometrical product specifications -model for product life cycle. Comput Aided Des 40:493–501

    Article  Google Scholar 

  56. Ricci F, Scott PJ, Jiang X (2013) A categorical model for uncertainty and cost management within the Geometrical Product Specification (GPS) framework. Precis Eng 37(2):265–274

    Article  Google Scholar 

  57. Miller D, Shamsie J (1999) Strategic responses to three kinds of uncertainty: product line simplicity at the Hollywood film studios. J Manag 25(1):97–116

    Google Scholar 

  58. Morgan LO, Daniels RL, Kouvelis P (2001) Marketing/manufacturing trade-offs in product line management. IIE Trans 33(11):949–962

    Google Scholar 

  59. Chica M, Cordón Ó, Damas S, Bautista J (2013) A robustness information and visualization model for time and space assembly line balancing under uncertain demand. Int J Prod Econ 145(2):761–772

    Article  Google Scholar 

  60. Alexouda G (2005) A user-friendly marketing decision support system for the product line design using evolutionary algorithms. Decis Support Syst 38(4):495–509

    Article  Google Scholar 

  61. Chen S, Wu S, Zhang X, Dai H (2014) An evolutionary approach for product line adaptation. Int J Prod Res 52(20):5932–5944

    Article  Google Scholar 

  62. Gaustad G, Li P, Kirchain R (2007) Modeling methods for managing raw material compositional uncertainty in alloy production. Resour Conserv Recycl 52(2):180–207

    Article  Google Scholar 

  63. Xiao A, Seepersad CC, Allen JK, Rosen DW, Mistree F (2007) Design for manufacturing: application of collaborative multidisciplinary decision-making methodology. Eng Optim 39(4):429–451

    Article  Google Scholar 

  64. Vassiliadis CG, Pistikopoulos EN (2001) Maintenance scheduling and process optimization under uncertainty. Comput Chem Eng 25(2):217–236

    Article  Google Scholar 

  65. Kheawhom S, Hirao M (2004) Decision support tools for environmentally benign process design under uncertainty. Comput Chem Eng 28(9):1715–1723

    Article  Google Scholar 

  66. Ricardez-Sandoval LA, Douglas PL, Budman HM (2011) A methodology for the simultaneous design and control of large-scale systems under process parameter uncertainty. Comput Chem Eng 35(2):307–318

    Article  Google Scholar 

  67. Sankararaman S, Mahadevan S (2013) Separating the contributions of variability and parameter uncertainty in probability distributions. Reliab Eng Syst Saf 112:187–199

    Article  Google Scholar 

  68. Xiu D, Karniadakis GE (2003) A new stochastic approach to transient heat conduction modeling with uncertainty. Int J Heat Mass Transf 46(24):4681–4693

    Article  MATH  Google Scholar 

  69. Legault J, Langley RS, Woodhouse J (2012) Physical consequences of a nonparametric uncertainty model in structural dynamics. J Sound Vib 331(25):5469–5487

    Article  Google Scholar 

  70. Fakoor Pakdaman M, Akhavan-Behabadi MA, Razi P (2012) An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Thermal Fluid Sci 40:103–111

    Article  Google Scholar 

  71. Roy R, Azene YT, Farrugia D, Onisa C, Mehnen J (2009) Evolutionary multi-objective design optimisation with real life uncertainty and constraints. CIRP Ann Manuf Technol 58(1):169–172

    Article  Google Scholar 

  72. Zhang G, Shang J, Li W (2011) Collaborative production planning of supply chain under price and demand uncertainty. Eur J Oper Res 215(3):590–603

    Article  MATH  MathSciNet  Google Scholar 

  73. Klir GJ (1990) A principle of uncertainty and information invariance*. Int J Gen Syst 17(2–3):249–275

    Article  MATH  Google Scholar 

  74. Salzberg S, Watkins M (1990) Managing information for concurrent engineering: challenges and barriers. Res Eng Des 2(1):35–52

    Article  Google Scholar 

  75. Chowdhury S, Gibb F, Landoni M (2011) Uncertainty in information seeking and retrieval: a study in an academic environment. Inf Process Manag 47(2):157–175

    Article  Google Scholar 

  76. Wang X, Wang L (2011) Uncertainty quantification and propagation analysis of structures based on measurement data. Math Comput Model 54(11):2725–2735

    Article  MATH  MathSciNet  Google Scholar 

  77. Chandrashekhar H, Bhasker B (2011) Quickly locating efficient, equitable deals in automated negotiations under two-sided information uncertainty. Decis Support Syst 52(1):157–168

    Article  Google Scholar 

  78. Dai J, Xu Q (2012) Approximations and uncertainty measures in incomplete information systems. Inf Sci 198:62–80

    Article  MATH  MathSciNet  Google Scholar 

  79. Delen D, Demirkan H (2013) Data, information and analytics as services. Decis Support Syst 55(1):359–363

    Article  Google Scholar 

  80. Reich Y, Paz A (2008) Managing product quality, risk, and resources through resource quality function deployment. J Eng Des 19(3):249–267

    Article  Google Scholar 

  81. de Araujo MF, Trabasso LG (2013) Applying QFD to business development environment. J Braz Soc Mech Sci Eng 35(2):131–142

    Article  Google Scholar 

  82. Dubois D, Prade H (1996) That are fuzzy rules and how to use them? Fuzzy Sets Syst 84(2):169–185

    Article  MATH  Google Scholar 

  83. Hsiao SW (1998) Fuzzy logic based decision model for product design. Int J Ind Ergon 21(2):103–116

    Article  MathSciNet  Google Scholar 

  84. Chen LH, Weng MC (2006) An evaluation approach to engineering design in QFD processes using fuzzy goal programming models. Eur J Oper Res 172(1):230–248

    Article  MATH  Google Scholar 

  85. Huynh VN, Nakamori Y, Ryoke M, Ho TB (2007) Decision making under uncertainty with fuzzy targets. Fuzzy Optim Decis Mak 6(3):255–278

    Article  MATH  MathSciNet  Google Scholar 

  86. Li Y, Tong S, Li T, Jing X (2014) Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach. Fuzzy Sets Syst 235:1–24

    Article  MATH  MathSciNet  Google Scholar 

  87. You ZH, Smith S (2016) A multi-objective modular design method for creating highly distinct independent modules. Res Eng Des 27(2):179–191

  88. Yang SM, Nagamachi M, Lee SY (1999) Rule-based inference model for the Kansei Engineering System. Int J Ind Ergon 24(5):459–471

    Article  Google Scholar 

  89. Nagamachi M (1995) Kansei engineering: a new ergonomic consumer-oriented technology for product development. Int J Ind Ergon 15(1):3–11

    Article  Google Scholar 

  90. Jung K, Na Y (2004) Developing a textile design recommendation system according to consumers’ sensibilities. J Text Inst 95(1–6):207–216

    Article  Google Scholar 

  91. Jung H, Chung KY (2013) Discovery of automotive design paradigm using relevance feedback. Pers Ubiquitous Comput 18(6):1363–1372

  92. Vallance R, Kiani S, Nayfeh S (2001) Open design of manufacturing equipment. In: CIRP 1st international conference on agile, reconfigurable manufacturing, Ann Arbor

  93. Stallman R (1999) The GNU operating system and the free software movement. In: Open sources: voices from the open source revolution. O’ Reilly and Associates. http://www.oreilly.com/openbook/opensources/book/stallman.html. Accessed 13 Apr 2016

  94. Pearce JM, Blair CM, Laciak KJ, Andrews R, Nosrat A, Zelenika-Zovko I (2010) 3-D printing of open source appropriate technologies for self-directed sustainable development. J Sustain Dev 3(4):p17

    Article  Google Scholar 

  95. Howard TJ, Achiche S, Özkil AG, McAloone TC (2012) Open design and crowdsourcing: maturity, methodology and business models. In: Design 2012-12th international conference on design, pp 181–190

  96. Wickord W, Wallaschek J (2000) Front load design: handling uncertainty in product design. In: Proceedings of the 7th European concurrent engineering conference, concurrent engineering in the framework of IT convergence, Leicester, UK

  97. Thomke S, Fujimoto T (2000) The effect of “front-loading” problem solving on product development performance. J Prod Innov Manag 17(2):128–142

    Article  Google Scholar 

  98. Lindemann U, Lorenz M (2008) Uncertainty handling in integrated product development. In: DS 48: proceedings DESIGN 2008, the 10th international design conference, Dubrovnik, Croatia

  99. Cheung FK, Rihan J, Tah J, Duce D, Kurul E (2012) Early stage multi-level cost estimation for schematic BIM models. Autom Constr 27:67–77

    Article  Google Scholar 

  100. Huynh VN, Nakamori Y, Ho TB, Murai T (2006) Multiple-attribute decision making under uncertainty: the evidential reasoning approach revisited. Syst Man Cybern Part A Syst Hum IEEE Trans 36(4):804–822

    Article  Google Scholar 

  101. Gao C, Wei D, Hu Y, Mahadevan S, Deng Y (2013) A modified evidential methodology of identifying influential nodes in weighted networks. Phys A 392(21):5490–5500

    Article  MathSciNet  Google Scholar 

  102. Yang JB, Singh Madan G (1994) An evidential reasoning approach for multiple-attribute decision making with uncertainty. Syst Man Cybern IEEE Trans 24(1):1–18

    Article  Google Scholar 

  103. Yang JB (2001) Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. Eur J Oper Res 131(1):31–61

    Article  MATH  MathSciNet  Google Scholar 

  104. Zhou J, Mourelatos ZP, Ellis C (2008) Design under uncertainty using a combination of evidence theory and a Bayesian approach (No. 2008-01-0377). SAE Technical Paper

  105. Besharati B, Azarm S, Farhang-Mehr A (2002) A customer-based expected utility metric for product design selection. In: ASME 2002 international design engineering technical conferences and computers and information in engineering conference, pp 421–428

  106. Costello K (2012) Should Utilities compensate customers for service interruptions? Electr J 25:45–55

    Google Scholar 

  107. Sitarz S (2006) Hybrid methods in multi-criteria dynamic programming. Appl Math Comput 180(1):38–45

    MATH  MathSciNet  Google Scholar 

  108. Cámara M, Ortega J, de Toro F (2009) A single front genetic algorithm for parallel multi-objective optimization in dynamic environments. Neuro Comput 72:3570–3579

    Google Scholar 

  109. Coelho RF (2013) Co-evolutionary optimization for multi-objective design under uncertainty. J Mech Des 135(021006):1–11

    Google Scholar 

  110. Ganguly S, Sahoo NC, Das D (2013) Multi-objective planning of electrical distribution systems using dynamic programming. Int J Electr Power Energy Syst 46:65–78

    Article  Google Scholar 

  111. Mayer RJ, Painter MK, deWitte PS (1994) IDEF family of methods for concurrent engineering and business re-engineering applications. Knowledge Based Systems, Inc. http://www.iso.staratel.com/IDEF/BPR/IDEFFAMI.pdf. Accessed 17 Apr 2016

  112. Busby JS, Williams GM (1993) The value and limitations of using process models to describe the manufacturing organization. Int J Prod Res 31(9):2179–2194

    Article  Google Scholar 

  113. Cho H (1999) Integrated framework of IDEF modelling methods for structured design of shop floor control systems. Int J Comput Integr Manuf 12(2):113–128

    Article  MathSciNet  Google Scholar 

  114. Zhang J, Gu J, Li P, Duan Z (1999) Object-oriented modeling of control system for agile manufacturing cells. Int J Prod Econ 62(1):145–153

    Article  Google Scholar 

  115. Kim SH, Jang KJ (2002) Designing performance analysis and IDEF0 for enterprise modelling in BPR. Int J Prod Econ 76(2):121–133

    Article  Google Scholar 

  116. Huang GQ (2002) Web-based support for collaborative product design review. Comput Ind 48(1):71–88

    Article  Google Scholar 

  117. Chao LP, Tumer I, Ishii K (2004) Design process error-proofing: engineering peer review lessons from NASA. In: ASME 2004 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, Salt Lake City, Utah, USA, pp 793–803

  118. Stamatelatos M, Dezfuli H, Apostolakis G, Everline C, Guarro S, Mathias D, Youngblood R (2011) Probabilistic risk assessment procedures guide for NASA managers and practitioners, Office of Safety and Mission Assurance, NASA, Washington, DC. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf. Accessed 17 Apr 2016

  119. Balootaki MRA, Zamanian R, Ghadimi P (2016) Using Taguchi method for designing wedge-shaped structures for an acoustically non-reflecting test section. J Braz Soc Mech Sci Eng 39(4):1151–1164

  120. Tsui KL (1992) An overview of Taguchi method and newly developed statistical methods for robust design. IIE Trans 24(5):44–57

    Article  Google Scholar 

  121. Otto KN, Antonsson EK (1993) The method of imprecision compared to utility theory for design selection problems. In: Proceedings of the ASME design theory and methodology conference

  122. Lee KH, Eom IS, Park GJ, Lee WI (1996) Robust design for unconstrained optimization problems using the Taguchi method. AIAA J 34(5):1059–1063

    Article  MATH  Google Scholar 

  123. Cooper RG (2008) Perspective: the Stage-Gate® idea-to-launch process—update, what’s new, and NexGen systems*. J Prod Innov Manag 25(3):213–232

    Article  Google Scholar 

  124. Zang T, Hemsch M, Hilburger M, Kenny S, Luckring J, Maghami P, Padula S (2002) Needs and Opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles, NASA/TM-2002-211462. Langley Research Center, Hampton

    Google Scholar 

  125. Yu X, Du X (2006) Reliability-based multidisciplinary optimization for aircraft wing design. Struct Infrastructure Eng 2(3–4):277–289

    Article  Google Scholar 

  126. Steward DV (2007) DSM—where it’s been—where it needs to go. In DSM 2007: proceedings of the 9th international DSM conference, Munich, Germany, 16.-18.10. 2007

  127. Browning TR (2001) Applying the design structure matrix to system decomposition and integration problems: a review and new directions. Eng Manag IEEE Trans 48(3):292–306

    Article  Google Scholar 

  128. Yassine A (2004) An introduction to modeling and analyzing complex product development processes using the design structure matrix (DSM) method. Urbana 51(9):1–17

    Google Scholar 

  129. Sevinc S (1990) Automation of simplification in discrete event modelling and simulation*. Int J Gen Syst 18(2):125–142

    Article  MATH  Google Scholar 

  130. Sterman JD (2001) System dynamics modeling. Calif Manag Rev 43(4):8–25

    Article  Google Scholar 

  131. Eusgeld I, Henzi D, Kröger W (2008) Comparative evaluation of modeling and simulation techniques for interdependent critical infrastructures. Scientific Report, Laboratory for Safety Analysis, ETH Zurich, Zurich

    Google Scholar 

  132. Antsaklis PJ, Stiver JA, Lemmon M (1993) Hybrid system modeling and autonomous control systems. In: Hybrid systems, pp 366–392

  133. Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal 1(1):11–27

    Article  Google Scholar 

  134. Xu K, Tang LC, Xie M, Ho SL, Zhu ML (2002) Fuzzy assessment of FMEA for engine systems. Reliab Eng Syst Saf 75(1):17–29

    Article  Google Scholar 

  135. Yang J, Huang HZ, He LP, Zhu SP, Wen D (2011) Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster-Shafer evidence theory under uncertainty. Eng Fail Anal 18(8):2084–2092

    Article  Google Scholar 

  136. Ericson CA, Ll C (1999) Fault tree analysis. In: System safety conference, Orlando, Florida, pp 1–9

  137. Lin CT, Wang MJJ (1997) Hybrid fault tree analysis using fuzzy sets. Reliab Eng Syst Saf 58(3):205–213

    Article  Google Scholar 

  138. Cepin M (2011) Assessment of power system reliability. Methods and applications. Springer, UK, p 2011

    Book  Google Scholar 

  139. ten Veldhuis JA, Clemens FH, van Gelder PH (2011) Quantitative fault tree analysis for urban water infrastructure flooding. Struct Infrastructure Eng 7(11):809–821

    Article  Google Scholar 

  140. Gunasekaran A (1999) Agile manufacturing: a framework for research and development. Int J Prod Econ 62(1):87–105

    Article  Google Scholar 

  141. Lindstrom L, Jeffries R (2004) Extreme programming and agile software development methodologies. Inf Syst Manag 21(3):41–52

    Article  Google Scholar 

  142. Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating to agile methodologies. Commun ACM 48(5):72–78

    Article  Google Scholar 

  143. Sillitti A, Ceschi M, Russo B, Succi G (2005) Managing uncertainty in requirements: a survey in documentation-driven and agile companies. In: Software Metrics, 2005. 11th IEEE international symposium. IEEE, p 10

  144. Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review. Inf Softw Technol 50(9):833–859

    Article  Google Scholar 

  145. D’Hoinne J (2011) Could ‘wait and see’be the best IPv6 strategy? Netw Secur 2011(12):12–14

    Article  Google Scholar 

  146. Burrus D (2009) Plug into your future by unplugging from the present. SuperVision 70(12):12

    Google Scholar 

  147. Francica G, de Sio I, Pompili M, Livraghi T (2013) “Wait and see” policy for early hepatocellular carcinoma. J Hepatol 59(3):635–636

    Article  Google Scholar 

  148. Dong A, Sarkar S, Yang MC, Honda T (2014) A linguistic approach to assess the dynamics of design team preference in concept selection. Res Eng Des 25(1):75–92

    Article  Google Scholar 

  149. Chan KY, Kwong CK, Dillon TS, Fung KY (2011) An intelligent fuzzy regression approach for affective product design that captures nonlinearity and fuzziness. J Eng Des 22(8):523–542

    Article  Google Scholar 

  150. Kumar P, Tandon P (2015) Uncertainty and decision making in product design: a fuzzy approach. In: DS79: proceedings of the third international conference on design creativity. Indian Institute of Science, Bangalore

  151. Sii HS, Wang J, Jenkinson I, Yang JB, Liu L (2004) A design-decision support framework for evaluation of design options/proposals using a fuzzy-logic-based composite structure methodology. J Eng Des 15(5):493–514

    Article  Google Scholar 

  152. Zhou M, Liu XB, Yang JB, Fang C (2013) Group evidential reasoning approach for MADA under fuzziness and uncertainties. Int J Comput Intell Syst 6(3):423–441

    Article  Google Scholar 

  153. Heuvelink GB (2002) Analysing uncertainty propagation in GIS: why is it not that simple. In: Foody GM, Atkinson PM (eds.) Uncertainty in remote sensing and GIS. Wiley, pp 155–165

  154. Lin L, Chen LC (2002) Constraints modelling in product design. J Eng Des 13(3):205–214

    Article  MathSciNet  Google Scholar 

  155. Dorador JM, Young RI (2000) Application of IDEF0, IDEF3 and UML methodologies in the creation of information models. Int J Comput Integr Manuf 13(5):430–445

    Article  Google Scholar 

  156. Bongard-Blanchy K, Bouchard C, Aoussat A (2013) Limits of Kansei-Kansei unlimited. Int J Affect Eng 12(2):145–153

    Article  Google Scholar 

  157. Turk D, France R, Rumpe B (2002) Limitations of agile software processes. In: Third international conference on eXtreme programming and agile processes in software engineering (XP 2002). Cambridge University Press, Cambridge, pp 43–46

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Tandon.

Additional information

Technical Editor: Fernando Antonio Forcellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Tandon, P. Classification and mitigation of uncertainty as per the product design stages: framework and case study. J Braz. Soc. Mech. Sci. Eng. 39, 4785–4806 (2017). https://doi.org/10.1007/s40430-017-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0822-9

Keywords

Navigation