Skip to main content
Log in

Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: An analytic solution

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Present analysis is made for the laminar flow of Oldroyd-B fluid induced by a deforming sheet in the existence of transverse magnetic field. Flow model is constructed in the presence of slip boundary condition. The governing problem even after utilizing boundary layer approximations comprises of non-linear differential equation with the non-linear boundary condition. Such boundary condition for the no slip case is linear. Highly accurate analytic solutions for velocity distribution are derived by powerful homotopy analysis approach. Permissible values of the convergence control parameter are obtained by the so-called h-curves. The behavior of parameters on the solutions is shown graphically. In the light of numerical results, we predict that slip effect gives opposition to the momentum transport phenomenon. Moreover, the behaviors of relaxation and retardation time are qualitatively opposite. A comparative study of slip and no-slip cases is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhatnagar RK, Gupta G, Rajagopal KR (1995) Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non-Linear Mech 30:391–405

    Article  MATH  Google Scholar 

  2. Sadeghy K, Najafi AH, Saffaripour M (2005) Sakiadis flow of an upper-convected Maxwell fluid. Int J Nonlinear Mech 40:1220–1228

    Article  MATH  Google Scholar 

  3. Sadeghy K, Hajibeygi H, Taghavi SM (2006) Stagnation point flow of upper-convected Maxwell fluids. Int J Non-Linear Mech 41:1242–1247

    Article  Google Scholar 

  4. Kumari M, Nath G (2009) Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field. Int J Nonlinear Mech 44:1048–1055

    Article  MATH  Google Scholar 

  5. Raftari B, Yildirim A (2010) The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. Comp Math Appl 59:3328–3337

    Article  MathSciNet  MATH  Google Scholar 

  6. Sajid M, Abbas Z, Javed T, Ali N (2010) Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Can J Phys 88:635–640

    Article  Google Scholar 

  7. Mukhopadhyay S (2012) Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chin Phys Lett 29:054703

    Article  Google Scholar 

  8. Hayat T, Mustafa M, Shehzad SA, Obaidat S (2012) Melting heat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet. Int J Numer Methods Fluids 68:233–243

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayat T, Shehzad SA, Alsaedi A, Alhothali MS (2013) Three-dimensional flow of Oldroyd-B fluid over surface with convective boundary conditions. Appl Math Mech 34:489–500

    Article  MathSciNet  Google Scholar 

  10. Shateyi S (2013) A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction. Bound Value Probl 2013:196

    Article  MathSciNet  MATH  Google Scholar 

  11. Hayat T, Imtiaz M, Alsaedi A, Almezal S (2016) On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions. J Magn Magn Mater 401:296–303

    Article  Google Scholar 

  12. Motsa SS, Ansari MS (2015) Unsteady boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet with variable thermal conductivity. Therm Sci 19:239–248

    Article  Google Scholar 

  13. Zhang Y, Zhang M, Bai Y (2016) Flow and heat transfer of an Oldroyd-B nanofluid thin film over an unsteady stretching sheet. J Mol Liq 220:665–670

    Article  Google Scholar 

  14. Mustafa M (2016) Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Adv 5:047109. doi:10.1063/1.4917306

    Article  Google Scholar 

  15. Shehzad SA, Abdullah Z, Abbasi FM, Hayat T, Alsaedi A (2016) Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface. J Magn Magn Mater 399:97–108

    Article  Google Scholar 

  16. Hayat T, Javed T, Abbas Z (2008) Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space. Int J Heat Mass Transf 51:4528–4534

    Article  MATH  Google Scholar 

  17. Mahmoud MAA (2011) Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation. Math Comp Model 54:1228–1237

    Article  MathSciNet  MATH  Google Scholar 

  18. Niu J, Fu C, Tan W (2012) Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube. PLoS One 7(5):e37274

    Article  Google Scholar 

  19. Sahoo B, Poncet S (2011) Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial slip boundary condition. Int J Heat Mass Transf 54:5010–5019

    Article  MATH  Google Scholar 

  20. Sahoo B (2011) Effects of slip on sheet-driven flow and heat transfer of a non-Newtonian fluid past a stretching sheet. Comp Math Appl 61:1442–1456

    Article  MathSciNet  MATH  Google Scholar 

  21. Sahoo B, Abbasbandy S, Poncet S (2014) A brief note on the computation of the Bödewadt flow with Navier slip boundary conditions. Comput Fluids 90:133–137

    Article  MathSciNet  Google Scholar 

  22. Sajid M, Abbas Z, Ali N, Javed T, Ahmad I (2014) Slip flow of Maxwell fluid past a stretching sheet. Walailak J Sci Technol 11:1093–1103

    Google Scholar 

  23. Hina S (2016) MHD peristaltic transport of Eyring-Powell fluid with heat/mass transfer, wall properties and slip conditions. J Magn Magn Mater 404:148–158

    Article  Google Scholar 

  24. Srinivasacharya D, Bindu KH (2015) Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions. Energy 91:72–83

    Article  Google Scholar 

  25. Sheikholeslami M, Ashorynejad HR, Rana P (2016) Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J Mol Liq 214:86–95

    Article  Google Scholar 

  26. Sheikholeslami M, Vajravelu K, Rashidi MM (2016) Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf 92:339–348

    Article  Google Scholar 

  27. Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  28. Sheikholeslami M (2017) Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq 225:903–912

    Article  Google Scholar 

  29. Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall, CRC Press, Boca Raton

    Book  Google Scholar 

  30. Liao SJ (2012) Homotopy analysis method in nonlinear differential equations. Springer & Higher Education Press, Heidelberg

    Book  MATH  Google Scholar 

  31. Liao SJ (2014) Advances in the homotopy analysis method. World Scientific Publishing, London

    Book  MATH  Google Scholar 

  32. Sheikholeslami M, Ganji DD (2016) Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect. J Mol Liq 224 A:526–537

  33. Sheikholeslami M, Ganji DD, Rashidi MM (2016) Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J Magn Magn Mater 416:164–173

    Article  Google Scholar 

  34. Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663

    Article  MathSciNet  Google Scholar 

  35. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879

    Article  Google Scholar 

  36. Sheikholeslami M, Ashorynejad HR, Ganji DD, Yildirim A (2012) Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Scientia Iranica B 19:437–442

    Article  Google Scholar 

  37. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by the Adomian decomposition method. Appl Math Mech-Engl Ed 33:1553–1564

  38. Guerrero F, Santonja FJ, Villanueva RJ (2013) Solving a model for the evolution of smoking habit in Spain with homotopy analysis method. Nonlinear Anal Real World Appl 14:549–558

    Article  MathSciNet  MATH  Google Scholar 

  39. Hetmaniok E, Slota D, Trawinski T, Witula R (2014) Usage of the homotopy analysis method for solving the nonlinear and linear integral equations of the second kind. Numer Algorithms 67(1):163–185

    Article  MathSciNet  MATH  Google Scholar 

  40. Van Gorder RA (2015) Relation between Lane-Emden solutions and radial solutions to the elliptic Heavenly equation on a disk. New Astron 37:42–47

    Article  Google Scholar 

  41. Dinarvand S, Hosseini R, Pop I (2016) Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model, Internat. J Numer Methods Heat Fluid Flow 26(1):40–62

    Article  MathSciNet  MATH  Google Scholar 

  42. Hassan H, Rashidi MM (2014) An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method, Internat. J Numer Methods Heat Fluid Flow 24(2):419–437

    Article  MathSciNet  MATH  Google Scholar 

  43. Sheikholeslami M, Ellahi R, Ashorynejad HR, Domairry G, Hayat T (2014) Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J Comput Theor Nanosci 11:486–496

    Article  Google Scholar 

  44. Sheikholeslami M, Ganji DD (2014) Magnetohydrodynamic flow in a permeable channel filled with nanouid. Scientia Iranica B 21:203–212

    Google Scholar 

  45. Abel MS, Tawade JV, Nandeppanavar MM (2012) MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47:385–393

    Article  MathSciNet  MATH  Google Scholar 

  46. Megahed AM (2013) Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin Phys B 22, Article ID 094701. doi:10.1088/1674-1056/22/9/094701

  47. Abbasi FM, Mustafa M, Shehzad SA, Alhuthali MS, Hayat T (2016) Analytical study of CattaneoChristov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin Phys B 25, Article ID 014701. doi:10.1088/1674-1056/25/1/014701

  48. Shafique Z, Mustafa M, Mushtaq A (2016) Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Result Phys 6:627–633

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for helpful comments, which lead to definite improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mustafa.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasbandy, S., Mustafa, M., Hayat, T. et al. Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: An analytic solution. J Braz. Soc. Mech. Sci. Eng. 39, 3389–3397 (2017). https://doi.org/10.1007/s40430-017-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0744-6

Keywords

Navigation