Skip to main content

Advertisement

Log in

Optimum design of straight bevel gears pair using evolutionary algorithms

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Straight bevel gear is a type of gear which is widely used in mechanical systems to transmit power between perpendicular rotating axes. Designing straight bevel gears with the least possible volume is of great importance in industry since it results in a decrease in energy consumption and the material requirement in manufacturing. In this paper, employing two powerful optimization algorithms, simulated annealing algorithm (SA) and genetic algorithm (GA), techniques for advanced optimization, coupled with American Gear Manufacturers Association (AGMA) instructions the volume of straight bevel gears pair is minimized and the corresponding design variables are obtained. These variables include majors, including teeth number, module and face width. Using a traditional technique, recommended values of the design variables by AGMA, a design example was performed and the values were obtained. Then, the suggested techniques were utilized to get the values. The comparison between the results of all techniques shows that proposed optimization algorithms are considerably capable of minimizing the volume. It indicates that improvement in the attained volume varies between 1.56 and 17.40% for SA and 9.28 and 23.15% for GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A iG :

Gear inner cone distance (mm)

A m :

Mean cone distance (mm)

b :

Face width (mm)

b ilp :

Pinion limit inner dedendum (mm)

b ip :

Pinion inner dedendum (mm)

b p :

Pinion mean dedendum (mm)

b min/b max :

Lower/upper limit range of face width (mm)

d :

Pitch diameter (mm)

e :

Base of natural logarithm

E i /E i−1 :

Energy level of the system at current/previous position

f(X):

Equality constraint

F(X):

Objective function

g(X):

Inequality constraint

i :

Number of steps in searching procedure

K A :

Overload factor

K V :

Dynamic factor

K :

Load distribution factor

K θ :

Temperature factor

k :

Boltzmann constant

m :

Module (mm)

m et :

Outer transverse module (mm)

n 1 :

Input speed (rpm)

P i :

Acceptance probability of the found solution

P r :

A random generated number (0 ≤ P r ≤ 1)

Q v :

Transmission accuracy number

r :

Cone pitch (mm)

S H/S F :

Safety factor for contact/bending stress

T i /T (i−1) :

System temperature of the system at current/previous position

V straight bevel gear :

Volume of straight bevel gear (mm3)

Vol:

Total volume of pinion and gear

W t :

Transmitted load (N)

X :

Vector of design variables

Y NT :

Stress-cycle factor for bending strength

Y x :

Reliability factor for bending strength

Y z :

Size factor for bending

Y β :

Length-wise curvature factor for bending strength

z :

Teeth number

z 1/z 2 :

Teeth number of pinion/gear

Z E :

Elastic coefficient for pitting resistance ([N/mm2]0.5)

Z I :

Contact geometry factor

Z J :

Bending geometry factor

Z NT :

Stress-cycle factor for pitting resistance

Z x :

Size factor for pitting resistance

Z xc :

Crowning factor for pitting

Z w :

Hardness-ratio factor

Z z :

Reliability factor for pitting

α :

Cooling rate of the system

γ :

Pinion pitch angle (rad)

λ :

Cone angle (rad)

σ Hlim/σ Flim :

Allowable contact/bending stress number (N/mm2)

δ 1/δ 2 :

Cone angle of pinion/gear (rad)

δ G/δ P :

Gear/pinion dedendum angle (rad)

Ψ iG :

Inner gear spiral angle (rad)

φ :

Normal pressure angle at pitch surface (rad)

φ Ti :

Inner transverse pressure angle (rad)

AGMA:

American Gear Manufacturers Association

GA:

Genetic algorithm

min:

Minimum

N:

No

SA:

Simulated annealing

TA:

Traditional algorithm

Y:

Yes

References

  1. Radzevich SP (2012) Dudley’s handbook of practical gear design and manufacture, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Budynas RG, Nesbit JK (2011) Shigley’s mechanical engineering design, 9th edn. McGraw-Hill, New York [Part 13 (624-732) and part 15 (786-824)]

    Google Scholar 

  3. Vahabi H, Panahi MS, Shirazinezhad RP, Imenabadi A (2015) A neuro-genetic approach to the optimal design of gear-blank lightening holes. J Braz Soc Mech Sci Eng. doi:10.1007/s40430-015-0362-0

    Google Scholar 

  4. Wang H, Wang HP (1994) Optimal engineering design of spur gear set. Mech Mach Theory 29:1071–1080. doi:10.1016/0094-114X(94)90074-4

    Article  Google Scholar 

  5. Thompson DF, Gupta S, Shukla A (2000) Tradeoff analysis in minimum volume design of multi-stage spur gear reduction units. Mech Mach Theory 35:609–627. doi:10.1016/S0094-114X(99)00036-1

    Article  MATH  Google Scholar 

  6. Huang H, Tian Z, Zuo MJ (2005) Multiobjective optimization of three-stage spur gear reduction units using interactive physical programming. J Mech Sci Technol 19(5):1080–1086. doi:10.1007/BF02984029

    Article  Google Scholar 

  7. Marjanovic N, Isailovic B, Marjanovic V, Milojevic Z, Blagojevic M, Bojic M (2012) A practical approach to the optimization of gear trains with spur gears. Mech Mach Theory 53:1–16. doi:10.1016/j.mechmachtheory.2012.02.004

    Article  Google Scholar 

  8. Golabi S, Fesharaki JJ, Yazdipoor M (2014) Gear train optimization based on minimum volume/weight design. Mech Mach Theory 73:197–217. doi:10.1016/j.mechmachtheory.2013.11.002

    Article  Google Scholar 

  9. Tudose L, Buiga O, Stefanache C, Sobester A (2010) Automated optimal design of a two-stage helical gear reducer. Struct Multidisc O 42:429–435. doi:10.1007/s00158-010-0504-z

    Article  Google Scholar 

  10. Padmanabhan S, Raman VS, Chandrasekaran M (2014) Optimisation of gear reducer using evolutionary algorithm. Mater Res Innov 18(6):378–382. doi:10.1179/1432891714Z.000000000983

    Google Scholar 

  11. Yang X (2008) Introduction to mathematical optimization—from linear programming to mataheuristics. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  12. Zhao S, Li J, Zhang C, Zhang W, Lin X, He X, Yao Y (2015) Thermo-structural optimization of integrated thermal protection panels with one-layer and two-layer corrugated cores based on simulated annealing algorithm. Struct Multidisc O 51:479–494. doi:10.1007/s00158-014-1137-4

    Article  Google Scholar 

  13. Mendi F, Baskal T, Boran K, Boran FE (2010) Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm. Expert Syst Appl 37:8058–8064. doi:10.1016/j.eswa.2010.05.082

    Article  Google Scholar 

  14. Bangert P (2012) Optimization for industrial problems. Springer, Berlin doi: 10.1007/978-3-642-24974-7

    Book  MATH  Google Scholar 

  15. Yokota T, Taguchi T, Gen M (1998) A solution method for optimal weight design problem of the gear using genetic algorithms. Comput Ind Eng 35:523–526. doi:10.1016/S0360-8352(98)00149-1

    Article  Google Scholar 

  16. Marcelin JL (2001) Genetic optimization of gears. Int J Adv Manuf Tech 19:910–915. doi:10.1007/s001700170101

    Article  Google Scholar 

  17. Fonseca DJ, Shishoo S, Lim TC, Chen DS (2005) A genetic algorithm approach to minimize transmission error of automotive spur gear sets. 19(2):153–179. doi:10.1080/08839510590901903

    Google Scholar 

  18. Gologlu C, Zeyveli M (2009) A genetic approach to automate preliminary design of gear drives. Comput Ind Eng 57:1043–1051. doi:10.1016/j.cie.2009.04.006

    Article  Google Scholar 

  19. Zhang X, Rong Y, Yu J, Zhang L, Cui L (2011) Development of optimization design software for bevel gear based on integer serial number encoding genetic algorithm. JSW 6:915–922. doi:10.4304/jsw.6.5.915-922

    Google Scholar 

  20. Dhafer G, Jérôme B, Philippe V, Michel O, Mohamed H (2012) Robust optimization of gear tooth modifications using a Genetic Algorithm. In: Haddar M (ed) Design and modeling of mechanical systems. Springer, Heidelberg, pp 189–197

    Google Scholar 

  21. Blanco JC, Gobbi M, Muñoz LE, (2014). Gear train optimization of a hybrid electric off-road vehicle. In: International design engineering technical conferences and computers and information in engineering conference, Buffalo, New York, USA, 1–9

  22. Tudose L, Buiga O (2014) Optimal mass minimization design of a two-stage coaxial helical speed reducer with Genetic Algorithms. Adv Eng Soft 68:25–32. doi:10.1016/j.advengsoft.2013.11.002

    Article  Google Scholar 

  23. Savsani V, Rao RV, Vakharia DP (2011) Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mech Mach Theory 45:531–541. doi:10.1016/j.mechmachtheory.2009.10.010

    Article  MATH  Google Scholar 

  24. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: IEEE world congress computational intelligence, Anchorage, Alaska, pp 69–73

  25. Shieh H, Kuo C (2011) Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl Math Comput 218:4365–4383. doi:10.1016/j.amc.2011.10.012

    MATH  Google Scholar 

  26. Zhao S, Li J, Zhang C, Zhang W, Lin X, He X, Yao Y (2015) Thermo-structural optimization of integrated thermal protection panels with one-layer and two-layer corrugated cores based on simulated annealing algorithm. Struct Multidisc Optim 51:479–494. doi:10.1007/s00158-014-1137-4

    Article  Google Scholar 

  27. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  28. Correia DS, Gonçalves CV, Sebastião S, Junior C, Ferraresi VA (2004) GMAW welding optimization using genetic algorithms. J Braz Soc Mech Sci Eng. doi:10.1590/S1678-58782004000100005

    Google Scholar 

  29. Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2012) Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms. J Braz Soc Mech Sci Eng 34(1):32–40

    Google Scholar 

  30. ANSI/AGMA 2003-B97 (2003) Design Manual for Bevel Gears. Alexandria, Virginia. USA: American Gear Manufacturers Association (AGMA), 1–32

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Akbari.

Additional information

Technical Editor: Fernando Antonio Forcellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, A., Goharimanesh, M. & Akbari, A.A. Optimum design of straight bevel gears pair using evolutionary algorithms. J Braz. Soc. Mech. Sci. Eng. 39, 2121–2129 (2017). https://doi.org/10.1007/s40430-017-0733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0733-9

Keywords

Navigation