Skip to main content
Log in

Effect of the quenching residual stress on ductile fracture behavior of pre-stretched aluminum alloy plates

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effect of quenching residual stress on the ductile fracture behavior of pre-stretched 7075 aluminum alloy plate. The GTN ductile fracture model is adopted for the failure analysis and implemented in the finite element package ABAQUS. Five cases of plates with different thicknesses are selected to study the effect of the quenching residual stress. By monitoring the average stress triaxialities at the surface and the central part of the plate, a new equation describing the relationship between the equivalent strains to fracture and the average stress triaxiality is proposed. Results show that the average stress triaxiality was strongly influenced by the quenching residual stress. The thicker the plate, the higher was the value of the average stress triaxiality at the central part of the plate and, as a result, the easier the crack occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

B :

Void nucleation coefficient

f :

Void volume fraction

f c :

Critical void volume fraction at the onset of coalescence

f f :

Critical void volume fraction at the onset of fracture

f n :

Total void volume fraction that can be nucleated

f * (f):

Void volume fraction function

I :

Unite tensor

q 1, q 2, q 3 :

Parameters for the GTN model

S n :

Standard deviation of the distribution of the plastic strain for void nucleation

Δf :

Increment of void volume fraction

Δf growth :

Increment of void volume fraction for the growth of existing voids

Δf nucleation :

Increment of void volume new fraction for the nucleation of voids

\(\Delta\varvec{\varepsilon}^{p}\) :

Increment of plastic strain tensor

\(\Delta \bar{\varepsilon }^{p}\) :

Increment of equivalent plastic strain

\(\varepsilon_{\text{n}}\) :

Mean value of the distribution of the plastic strain for void nucleation

\(\bar{\varepsilon }\) :

Equivalent strain

\(\bar{\varepsilon }_{\text{f}}\) :

Equivalent strain to fracture

\(\left( {{\raise0.7ex\hbox{${\sigma_{h} }$} \!\mathord{\left/ {\vphantom {{\sigma_{h} } {\sigma_{eq} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\sigma_{eq} }$}}} \right)_{av}\) :

Yield function

\(\sigma_{\text{eq}}\) :

Mises equivalent stress

\(\sigma_{\text{h}}\) :

Hypostatic stress

\(\sigma_{\text{y}}\) :

Yield stress

\({\raise0.7ex\hbox{${\sigma_{\text{h}} }$} \!\mathord{\left/ {\vphantom {{\sigma_{\text{h}} } {\sigma_{\text{eq}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\sigma_{\text{eq}} }$}}\) :

Stress triaxiality

\(\left( {{\raise0.7ex\hbox{${\sigma_{\text{h}} }$} \!\mathord{\left/ {\vphantom {{\sigma_{\text{h}} } {\sigma_{\text{eq}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\sigma_{\text{eq}} }$}}} \right)_{\text{av}}\) :

Average stress triaxiality

References

  1. Koç M, Culp J, Altan T (2006) Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. J Mater Process Technol 174(1–3):342–354. doi:10.1016/j.jmatprotec.2006.02.007

    Article  Google Scholar 

  2. Tanner DA, Robinson JS (2003) Modelling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products. Finite Elem Anal Des 39(5–6):369–386. doi:10.1016/S0168-874X(02)00079-3

    Article  Google Scholar 

  3. Andrade Pires FM, de Souza Neto EA, Owen DRJ (2004) On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials. Comput Methods Appl Mech Eng 193(48–51):5223–5256. doi:10.1016/j.cma.2004.01.038

    Article  MATH  Google Scholar 

  4. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24(6):1071–1096. doi:10.1016/j.ijplas.2007.09.004

    Article  MATH  Google Scholar 

  5. Benseddiq N, Imad A (2008) A ductile fracture analysis using a local damage model. Int J Press Vessels Pip 85(4):219–227. doi:10.1016/j.ijpvp.2007.09.003

    Article  Google Scholar 

  6. Li H, Fu MW, Lu J, Yang H (2011) Ductile fracture: experiments and computations. Int J Plast 27(2):147–180. doi:10.1016/j.ijplas.2010.04.001

    Article  Google Scholar 

  7. Gurson AL (1977) Continuum theory of ductile rupture by Void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15. doi:10.1115/1.3443401

    Article  Google Scholar 

  8. Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(3):249–256. doi:10.1115/1.3224807

    Article  Google Scholar 

  9. Tvergaard V (1989) Material failure by void growth to coalescence. In: John WH, Theodore YW (eds) Advances in applied mechanics, vol 27. Elsevier, pp 83–151. doi: 10.1016/S0065-2156(08)70195-9

  10. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35(2):363–371. doi:10.1115/1.3601204

    Article  Google Scholar 

  11. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17(3):201–217. doi:10.1016/0022-5096(69)90033-7

    Article  Google Scholar 

  12. Atkins AG (1996) Fracture in forming. J Mater Process Technol 56(1–4):609–618. doi:10.1016/0924-0136(95)01875-1

    Article  Google Scholar 

  13. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98. doi:10.1016/j.ijmecsci.2004.02.006

    Article  Google Scholar 

  14. Bao Y, Wierzbicki T (2004) A comparative study on various ductile crack formation criteria. J Eng Mater Technol 126(3):314–324. doi:10.1115/1.1755244

    Article  Google Scholar 

  15. Zhou J, Gao X, Hayden M, Joyce JA (2012) Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect. Eng Fract Mech 85:103–116. doi:10.1016/j.engfracmech.2012.02.014

    Article  Google Scholar 

  16. Farahani M, Sattari-Far I (2011) Effects of residual stresses on crack-tip constraints. Sci Iran 18(6):1267–1276. doi:10.1016/j.scient.2011.11.024

    Article  Google Scholar 

  17. Ding H-F, Zhu C-C, Li D-F, Du X-S, Liu M-Y (2012) Mode I stress intensity factor calculation of elliptical cracks in aluminum alloy thick plates considering quenching residual stress. Zhongguo Youse Jinshu Xuebao/Chin J Nonferrous Metals 22(12):3320–3326

    Google Scholar 

  18. Hibbitt HD, Karlsson BI, Sorensen EP (2011) ABAQUS theory manual-version 6.11 Edition. Theory manual-version 6.11 Edition. HKS Inc, Pawtucket, USA

    Google Scholar 

  19. Brar NS, Joshi VS, Harris BW, Elert M, Furnish MD, Anderson WW, Proud WG, Butler WT (2009) Constitutive model constants for Al7075-T651 and Al7075-T6. Paper presented at the shock compression of condensed matter - 2009, Tennessee, USA

  20. Chen Y, Ghosh S (2012) Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions. Int J Plast 32–33:218–247. doi:10.1016/j.ijplas.2011.10.008

    Article  Google Scholar 

  21. C-c Z, J-y L (2012) Stretch rate and deformation for pre-stretching aluminum alloy sheet. J Cent South Univ Technol 19(4):875–881. doi:10.1007/s11771-012-1086-2

    Article  Google Scholar 

  22. Zhu C, Luo J, Li D, Zhong Y, Li Y (2010) Numerical simulation and experimental investigation of the aluminum alloy quenching-induced residual stress by considering the flow stress characteristic. Jixie Gongcheng Xuebao/J Mech Eng 46(22):41–46. doi:10.3901/jme.2010.22.041

    Article  Google Scholar 

  23. Jordon JB, Horstemeyer MF, Solanki K, Bernard JD, Berry JT, Williams TN (2009) Damage characterization and modeling of a 7075-T651 aluminum plate. Mater Sci Eng A 527(1–2):169–178. doi:10.1016/j.msea.2009.07.049

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Major Scientific and Technological Special Project (2015ZX04005-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caichao Zhu.

Additional information

Technical editor: Eduardo Alberto Fancello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Zhu, C., Song, C. et al. Effect of the quenching residual stress on ductile fracture behavior of pre-stretched aluminum alloy plates. J Braz. Soc. Mech. Sci. Eng. 39, 2259–2267 (2017). https://doi.org/10.1007/s40430-017-0713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0713-0

Keywords

Navigation