Skip to main content
Log in

Reiterated homogenization applied to heat conduction in heterogeneous media with multiple spatial scales and perfect thermal contact between the phases

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Several types of heterogeneous media with multiple spatial scales presently offer good potential to improve upon more traditional materials used in heat transfer and other engineering applications. An example might be a large scale, otherwise homogeneous medium filled with dispersed small-scale particles that form aggregate structures at an intermediate scale. In this paper, the strong-form Fourier heat conduction problem in such media is formulated using the method of reiterated homogenization. The constituent phases are assumed to have a perfect thermal contact at the interface. The ratio of two successive length scales of the medium is a constant small parameter \(\varepsilon\). The method is an up-scaling procedure that writes the temperature field as an asymptotic multiple-scale expansion in powers of the small parameter \(\varepsilon\). The technique leads to two pairs of local and homogenized problems, linked by effective coefficients. In this manner the phenomenon description at the smallest scale is seen to affect the medium macroscale, or effective, behavior, which is the main interest in engineering. To facilitate the physical understanding of the derived sub-problems, an analytical solution is obtained for the heat conduction problem in a laminated binary composite. The present formulation shall serve as a basis for future efforts to numerically compute effective properties of heterogeneous media with multiple spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Greco A (2014) Numerical simulation and mathematical modeling of 2D multi-scale diffusion in lamellar nanocomposite. Comput Mater Sci 90:203–209. doi:10.1016/j.commatsci.2014.04.017

    Article  Google Scholar 

  2. Mortazavi B, Benzerara O, Meyer H, Bardon J, Ahzi S (2013) Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60:356–365. doi:10.1016/j.carbon.2013.04.048

    Article  Google Scholar 

  3. Shin H, Yang S, Chang S, Yu S, Cho M (2013) Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance. Polymer 54(5):1543–1554. doi:10.1016/j.polymer.2013.01.020

    Article  Google Scholar 

  4. Angayarkanni SA, Philip J (2015) Review on thermal properties of nanofluids: recent developments. Adv Colloid Interface 225:146–176. doi:10.1016/j.cis.2015.08.014

    Article  Google Scholar 

  5. Vatani A, Woodfield PL, Dao DV (2015) A survey of practical equations for prediction of effective thermal conductivity of spherical-particle nanofluids. J Mol Liq 211:712–733. doi:10.1016/j.molliq.2015.07.043

    Article  Google Scholar 

  6. Jin JS, Lee JS (2013) Effects of aggregated sphere distribution and percolation on thermal conduction of nanofluids. J Thermophys Heat Transf 27(1):173–178. doi:10.2514/1.T3915

    Article  Google Scholar 

  7. Wang JJ, Zheng RT, Gao JW, Chen G (2012) Heat conduction mechanisms in nanofluids and suspensions. Nano Today 7(2):124–136. doi:10.1016/j.nantod.2012.02.007

    Article  Google Scholar 

  8. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51(5–6):1431–1438. doi:10.1016/j.ijheatmasstransfer.2007.10.017

    Article  MATH  Google Scholar 

  9. Panasenko GP (2008) Homogenization for periodic media: from microscale to macroscale. Phys Atom Nucl+ 71(4):681–694. doi:10.1134/S106377880804008X

    Article  Google Scholar 

  10. Cioranescu D, Donato P (1999) An introduction to homogenization. Oxford University Press Inc., New York

    MATH  Google Scholar 

  11. Bakhvalov N, Panasenko G (1989) Homogenisation: averaging processes in periodic media. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  12. Allaire G, Briane M (1996) Multiscale convergence and reiterated homogenisation. Proc R Soc Edinb A 126(2):297–342. doi:10.1017/S0308210500022757

    Article  MathSciNet  MATH  Google Scholar 

  13. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland Publishing Company, Amsterdam

    MATH  Google Scholar 

  14. Allaire G (2010) Introduction to homogenization theory. School on Homogenization, CEA-EDF-INRIA

  15. Auriault J-L, Boutin C, Geindreau C (2009) Heterogenous medium: is an equivalent macroscopic description possible? In: Homogenization of coupled phenomena in heterogenous media. ISTE Ltd, London, pp 55–74. doi:10.1002/9780470612033.ch2

  16. Cruz ME, Patera AT (1995) A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media. Int J Numer Methods Eng 38(7):1087–1121. doi:10.1002/nme.1620380703

    Article  MATH  Google Scholar 

  17. Byström J (2002) Some mathematical and engineering aspects of the homogenization theory. D.Sc. thesis, Department of Mathematics, Lulea University of Technology, Lulea

  18. Byström J, Helsing J, Meidell A (2001) Some computational aspects of iterated structures. Compos Part B-Eng 32(6):485–490. doi:10.1016/S1359-8368(01)00033-6

    Article  Google Scholar 

  19. Telega JJ, Gałka A, Tokarzewski S (1999) Application of the reiterated homogenization to determination of effective moduli of a compact bone. J Theor Appl Mech 37(3):687–706

    MATH  Google Scholar 

  20. Cao LQ (2005) Iterated two-scale asymptotic method and numerical algorithm for the elastic structures of composite materials. Comput Methods Appl Mech 194(27–29):2899–2926. doi:10.1016/j.cma.2004.07.023

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi P, Spagnuolo A, Wright S (2005) Reiterated homogenization and the double-porosity model. Transp Porous Med 59(1):73–95. doi:10.1007/s11242-004-1121-3

    Article  MathSciNet  Google Scholar 

  22. Almqvist A, Essel EK, Fabricius J, Wall P (2008) Reiterated homogenization applied in hydrodynamic lubrication. Proc Inst Mech Eng J-J Eng 222(7):827–841. doi:10.1243/13506501JET426

    Article  MATH  Google Scholar 

  23. Auriault JL (1983) Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26(6):861–869. doi:10.1016/S0017-9310(83)80110-0

    Article  MATH  Google Scholar 

  24. Auriault JL, Ene HI (1994) Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. Int J Heat Mass Transf 37(18):2885–2892. doi:10.1016/0017-9310(94)90342-5

    Article  MATH  Google Scholar 

  25. Kamiński M (2003) Homogenization of transient heat transfer problems for some composite materials. Int J Eng Sci 41(1):1–29. doi:10.1016/S0020-7225(02)00144-1

    Article  MathSciNet  Google Scholar 

  26. Matine A, Boyard N, Cartraud P, Legrain G, Jarny Y (2013) Modeling of thermophysical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects. Int J Heat Mass Transf 62:586–603. doi:10.1016/j.ijheatmasstransfer.2013.03.036

    Article  Google Scholar 

  27. Rocha RPA, Cruz ME (2001) Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numer Heat Transf A-Appl 39(2):179–203. doi:10.1080/10407780118981

    Article  Google Scholar 

  28. Matt CF, Cruz ME (2008) Effective thermal conductivity of composite materials with 3-d microstructures and interfacial thermal resistance. Numer Heat Transf A-Appl 53(6):577–604. doi:10.1080/10407780701678380

    Article  Google Scholar 

  29. López-Ruiz G, Bravo-Castillero J, Brenner R, Cruz ME, Guinovart-Díaz R, Pérez-Fernández LD, Rodríguez-Ramos R (2015) Variational bounds in composites with nonuniform interfacial thermal resistance. Appl Math Model. doi:10.1016/j.apm.2015.02.048

    MathSciNet  MATH  Google Scholar 

  30. López-Ruiz G, Bravo-Castillero J, Brenner R, Cruz ME, Guinovart-Díaz R, Pérez-Fernández LD, Rodríguez-Ramos R (2015b) Improved variational bounds for conductive periodic composites with 3D microstructures and nonuniform thermal resistance. Z Angew Math Phys. doi:10.1007/s00033-015-0540-z

  31. Wargnier H, Kromm FX, Danis M, Brechet Y (2014) Proposal for a multi-material design procedure. Mater Des 56:44–49. doi:10.1016/j.matdes.2013.11.004

    Article  Google Scholar 

  32. Rycerz K, Bubak M, Ciepiela E, Hareżlak D, Gubała T, Meizner J, Pawlik M, Wilk B (2015) Composing, execution and sharing of multiscale applications. Futur Gener Comput Syst 53:77–87. doi:10.1016/j.future.2015.06.002

    Article  Google Scholar 

  33. Torquato S (2002) Random heterogeneous materials. In: Microstructure and macroscopic properties. Springer, New York

  34. Chung DDL (2010) Composite materials. In: Science and applications. Springer, London

Download references

Acknowledgments

Support provided by CNPq—Brazilian National Council for Scientific and Technological Development (Projects Nos. 303208/2014-7 and 451698/2015-0) and the Mechanical Engineering Program/COPPE/UFRJ is gratefully acknowledged. The authors thank Eng. Gabriel Verissimo for his help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ernani Cruz.

Additional information

Technical Editor: Francis HR Franca.

Appendix

Appendix

The expressions (25) and (26) for the boundary conditions of the first local problem and (46) and (47) for those of the second local problem are now deduced.

Perfect thermal contact-derived boundary conditions It results from Eqs. (3) and (7) up to \(\varepsilon ^{4}\) that

$$\begin{aligned} \left[ \!\left[ T_0 + \varepsilon T_1 + \varepsilon ^2 T_2 + \varepsilon ^3 T_3 + \varepsilon ^4 T_4 \right] \!\right] _{\Gamma _s} = 0, \quad \mathrm{on} \; \Gamma _s = \Gamma _Y \cup \Gamma _Z . \end{aligned}$$
(89)

Equating to zero the terms corresponding to equal powers of \(\varepsilon\),

$$\begin{aligned} \text{ from } \, \varepsilon ^{0}, \quad \left[ \!\left[ T_0 \right] \!\right] _{\Gamma _s}&= 0, \end{aligned}$$
(90)
$$\begin{aligned} \text{ from } \, \varepsilon ^{1}, \quad \left[ \!\left[ T_1 \right] \!\right] _{\Gamma _s}&= 0, \end{aligned}$$
(91)
$$\begin{aligned} \text{ from } \, \varepsilon ^{2}, \quad \left[ \!\left[ T_2 \right] \!\right] _{\Gamma _s}&= 0. \end{aligned}$$
(92)

From Eqs. (35) and (90), and the condition that the \(T_i\), \(i=0,1,2,\ldots\), are differentiable functions, one concludes that \(T\mathbf{(x)}\) and its derivatives are continuous across \(\Gamma _s\).

Combining Eqs. (43) and (91) results in

$$\begin{aligned} \left[ \!\left[ -\chi ^j\mathbf{(y)} \dfrac{\partial {T}}{\partial {x_j}} + \tilde{\tilde{T}}_1\mathbf{(x)} \right] \!\right] _{\Gamma _s} = 0, \end{aligned}$$
(93)

which is satisfied upon requiring that

$$\begin{aligned} \left[ \!\left[ \chi ^j \right] \!\right] _{\Gamma _Y} = 0, \quad \mathrm{on}\; \Gamma _{Y} . \quad \quad \quad (47) \end{aligned}$$

Now combining Eqs. (44) and (92) results in

$$\begin{aligned} \left[ \!\left[ -\chi _{y}^\ell (\mathbf{z}) \left( \dfrac{\partial {T}}{\partial {x_\ell }} - \dfrac{\partial {\chi ^j}}{\partial {y_\ell }} \dfrac{\partial {T}}{\partial {x_j}} \right) + \tilde{T}_2(\mathbf{x},\mathbf{y}) \right] \!\right] _{\Gamma _s} = 0, \end{aligned}$$
(94)

which is satisfied upon requiring that \(\tilde{T}_2\) be continuous across \(\Gamma _Y\) and

$$\begin{aligned} \left[ \!\left[ \chi _{y}^j \right] \!\right] _{\Gamma _Z} = 0, \quad \mathrm{on}\; \Gamma _{Z} . \quad \quad \quad (26) \end{aligned}$$

Heat flux-derived boundary conditions It results from Eqs. (2), (7) up to \(\varepsilon ^{4}\), and (9) that, on \(\Gamma _s = \Gamma _Y \cup \Gamma _Z\),

$$\begin{aligned}&\left[\left[ - k_{i j} \left( \varepsilon ^{-2} \frac{\partial T_0}{\partial z_j} + \varepsilon ^{-1} \left( \frac{\partial T_0}{\partial y_j} + \frac{\partial T_1}{\partial z_j} \right) + \varepsilon ^{0} \left( \frac{\partial T_0}{\partial x_j} + \frac{\partial T_1}{\partial y_j} + \frac{\partial T_2}{\partial z_j} \right) \right. \right.\right.\nonumber \\&\quad +\varepsilon ^{1} \left( \frac{\partial T_1}{\partial x_j} + \frac{\partial T_2}{\partial y_j} + \frac{\partial T_3}{\partial z_j} \right) + \varepsilon ^{2} \left( \frac{\partial T_2}{\partial x_j} + \frac{\partial T_3}{\partial y_j} + \frac{\partial T_4}{\partial z_j} \right) \nonumber \\&\quad +\left.\left.\left. \varepsilon ^{3} \left( \frac{\partial T_3}{\partial x_j} + \frac{\partial T_4}{\partial y_j} \right) + \varepsilon ^{4} \frac{\partial T_4}{\partial x_j} \right) \right]\right] _{\Gamma _s} n_i = 0. \end{aligned}$$
(95)

Equating to zero the terms corresponding to equal powers of \(\varepsilon\),

$$\begin{aligned} \text{ from } \, \varepsilon ^{-2}, \quad \left[ \!\left[ - k_{i j} \frac{\partial T_0}{\partial z_j} \right] \!\right] _{\Gamma _s} n_i&= 0, \end{aligned}$$
(96)
$$\begin{aligned} \text{ from } \, \varepsilon ^{-1}, \quad \left[ \!\left[ - k_{i j} \left( \frac{\partial T_0}{\partial y_j} + \frac{\partial T_1}{\partial z_j} \right) \right] \!\right] _{\Gamma _s} n_i&= 0, \end{aligned}$$
(97)
$$\begin{aligned} \text{ from } \; \varepsilon ^{0} , \quad \left[ \!\left[ - k_{i j} \left( \frac{\partial T_0}{\partial x_j} + \frac{\partial T_1}{\partial y_j} + \frac{\partial T_2}{\partial z_j} \right) \right] \!\right] _{\Gamma _s} n_i&= 0. \end{aligned}$$
(98)

From Eqs. (35) and (36) it follows that Eqs. (96) and (97) are identically verified.

Combining Eqs. (35), (36), (38), and (98) results in

$$\begin{aligned} \left[ \!\left[ - k_{i j} \left( \frac{\partial T}{\partial x_j} + \frac{\partial \tilde{T}_1}{\partial y_j} - \frac{\partial \chi ^\ell _y(\mathbf{z})}{\partial z_j} \left( \frac{\partial T}{\partial x_\ell } + \frac{\partial \tilde{T}_1}{\partial y_\ell } \right) + \frac{\partial \tilde{T}_2}{\partial z_j} \right) \right] \!\right] _{\Gamma _s} n_i = 0, \end{aligned}$$
(99)

or

$$\begin{aligned} \left[ \!\left[ - \left( k_{i \ell } - k_{i j} \frac{\partial \chi ^\ell _y}{\partial z_j} \right) \left( \frac{\partial T}{\partial x_\ell } + \frac{\partial \tilde{T}_1}{\partial y_\ell } \right) \right] \!\right] _{\Gamma _s} n_i = 0. \end{aligned}$$
(100)

Recognizing in Eq. (100) that T, \(\tilde{T}_1\), and their derivatives are continuous across \(\Gamma _s\), Eq. (98) is satisfied on the portion \(\Gamma _Z\) upon requiring that

$$\begin{aligned} \left[ \!\left[ - \left( k_{i j} - k_{i \ell } \frac{\partial \chi ^j_y}{\partial z_\ell } \right) \right] \!\right] _{\Gamma _Z} n_i = 0, \quad \mathrm{on}\; \Gamma _{Z} . \qquad \qquad (25) \end{aligned}$$

Now the combination of Eqs. (35), (43), (44), and (98) can be written as

$$\begin{aligned} \left[ \!\left[ \frac{\partial T}{\partial x_j} \left( - k_{i j} + k_{i \ell } \frac{\partial \chi ^j}{\partial y_\ell } + k_{i \ell } \frac{\partial \chi ^j_y}{\partial z_\ell } - k_{i \ell } \frac{\partial \chi ^m_y}{\partial z_\ell } \frac{\partial \chi ^j}{\partial y_m} \right) \right] \!\right] _{\Gamma _s} n_i = 0. \end{aligned}$$
(101)

Given continuity of T and its derivatives across \(\Gamma _s\), Eq. (101) yields, on application of the average operator over Z,

$$\begin{aligned} \left[ \!\left[ \left\langle - \left( k_{i j} - k_{i \ell } \frac{\partial \chi ^j_y}{\partial z_\ell } \right) + \left( k_{i \ell } - k_{i m} \frac{\partial \chi ^\ell _y}{\partial z_m} \right) \frac{\partial \chi ^j}{\partial y_\ell } \right\rangle _{\small {Z}} \right] \!\right] _{\Gamma _s} n_i = 0. \end{aligned}$$
(102)

Finally, Eq. (98) is also satisfied on the portion \(\Gamma _Y\) upon requiring that

$$\begin{aligned} \left[ \!\left[ - \left( k^{1}_{i j} - k^{1}_{i \ell } \frac{\partial \chi ^j}{\partial y_\ell } \right) \right] \!\right] _{\Gamma _Y} n_i = 0, \quad \mathrm{on}\; \Gamma _{Y} . \end{aligned}$$
(103)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, E.I., Cruz, M.E. & Bravo-Castillero, J. Reiterated homogenization applied to heat conduction in heterogeneous media with multiple spatial scales and perfect thermal contact between the phases. J Braz. Soc. Mech. Sci. Eng. 38, 1333–1343 (2016). https://doi.org/10.1007/s40430-016-0497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0497-7

Keywords

Navigation