Skip to main content

Advertisement

Log in

Void fraction predictive method based on the minimum kinetic energy

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new void fraction predictive method for two-phase gas–liquid flows inside tubes for horizontal and vertical upward flows based on the principle of minimum kinetic energy. Non-uniformities of the velocity profiles are taken into account in the development of the method through empirical factors defined by the momentum coefficients ratio. A regression analysis to correlate the momentum coefficients ratio based on a broad databank gathered from the literature covering horizontal and vertical upward flows is performed. The proposed method has proven more accurate than the current methods available in the literature, as it predicts 92 and 85 % of the experimental data for horizontal and vertical saturated flows, respectively, within a ±10 % error band. The experimental database includes results for saturated flow and covers mass velocities ranging from 70 to 800 kg/m2 s and from 37 to 4500 kg/m2 s and tube internal diameters from 0.5 to 13.8 mm and 6 to 89 mm for horizontal and vertical upward flows, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Area, m2

c i :

Constant and exponent, non-dimensional

C 0 :

Distribution parameter, non-dimensional

d :

Diameter, m

dA :

Cross-sectional area element, m2

g :

Gravitational acceleration, m/s2

G :

Mass velocity, kg/m2 s

j :

Superficial velocity, m/s

K :

Momentum coefficient, non-dimensional

T :

Temperature, °C

u :

In situ velocity, m/s

u gj :

Drift parameter, m/s

V z :

Axial component of velocity, m/s

x :

Vapor quality, non-dimensional

Fr:

Froude number

We:

Weber number

X tt :

Martinelli parameter

α :

Void fraction, non-dimensional

β :

Volumetric gas fraction, non-dimensional

ε :

Mean absolute deviation, non-dimensional

γ 10 :

Fraction of data predicted within ± 10 %

λ :

Capillary length, m

μ :

Dynamic viscosity, kg/m s

ρ :

Density, kg/m3

σ :

Surface tension, N/m

θ :

Inclination relative to horizontal plane, degrees

ξ :

Shedd [21] parameter, non-dimensional

g:

Relative to gas phase

H :

Horizontal

HM:

Homogeneous model

i :

Liquid or gas phase

l:

Relative to liquid phase

m :

Relative to mixture

R:

Rouhani [10]

V :

Vertical

References

  1. Wallis G (1969) One dimensional two-phase flow. Mcgraw-hill

  2. Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J 22(1):47–55. doi:10.1002/aic.690220105

    Article  Google Scholar 

  3. Wojtan L, Ursenbacher T, Thome JR (2005) Investigation of flow boiling in horizontal tubes: part I—a new diabatic two-phase flow pattern map. Int J Heat Mass Tran 48(14):2955–2969. doi:10.1016/j.ijheatmasstransfer.2004.12.012

    Article  Google Scholar 

  4. Wojtan L, Ursenbacher T, Thome JR (2005) Investigation of flow boiling in horizontal tubes: part II—development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int J Heat Mass Tran 48(14):2970–2985. doi:10.1016/j.ijheatmasstransfer.2004.12.013

    Article  Google Scholar 

  5. Moreno-Quibén J, Thome JR (2007) Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part I: diabatic and adiabatic experimental study. Int J Heat Fluid Fl 28(5):1049–1059. doi:10.1016/j.ijheatfluidflow.2007.01.003

    Article  Google Scholar 

  6. Moreno Quibén J, Thome JR (2007) Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part II: new phenomenological model. Int J Heat Fluid Fl 28(5):1060–1072. doi:10.1016/j.ijheatfluidflow.2007.01.004

    Article  Google Scholar 

  7. Kawahara A, Sadatomi M, Nei K, Matsuo H (2009) Experimental study on bubble velocity, void fraction and pressure drop for gas–liquid two-phase flow in a circular microchannel. Int J Heat Fluid Fl 30(5):831–841. doi:10.1016/j.ijheatfluidflow.2009.02.017

    Article  Google Scholar 

  8. Falcone G, Hewitt G, Alimonti C (2009) Multiphase flow metering: principles and applications, vol 54. Elsevier, Amsterdam

    Google Scholar 

  9. Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87(4):453–468. doi:10.1115/1.3689137

    Article  Google Scholar 

  10. Rouhani Z (1969) Modified correlations for void and two-phase pressure drop (No. AE-RTV-8841). Aktiebolaget Atomenergi

  11. Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Tran 13(2):383–393. doi:10.1016/0017-9310(70)90114-6

    Article  Google Scholar 

  12. Woldesemayat MA, Ghajar AJ (2007) Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int J Multiph Flow 33(4):347–370. doi:10.1016/j.ijmultiphaseflow.2006.09.004

    Article  Google Scholar 

  13. Zivi SM (1964) Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. J Heat Transf 86:247. doi:10.1115/1.3687113

    Article  Google Scholar 

  14. Stephan K (1992) Heat transfer in condensation and boiling. Springer, Berlin. ISBN 978-3-642-52459-2

    Book  Google Scholar 

  15. Thome JR (2004) Engineering data book III. Wolverine Tube Inc, Switzerland

    Google Scholar 

  16. Feenstra PA, Weaver DS, Judd RL (2000) An improved void fraction model for two-phase cross-flow in horizontal tube bundles. Int J Multiph Flow 26(11):1851–1873. doi:10.1016/S0301-9322(99)00118-4

    Article  MATH  Google Scholar 

  17. Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45(1):39–48

    Google Scholar 

  18. Butterworth D (1975) A comparison of some void-fraction relationships for co-current gas-liquid flow. Int J Multiph Flow 1(6):845–850. doi:10.1016/0301-9322(75)90038-5

    Article  MathSciNet  Google Scholar 

  19. Xu GP, Tso CP, Tou KW (1998) Hydrodynamics of two-phase flow in vertical up and down-flow across a horizontal tube bundle. Int J Multiph Flow 24(8):1317–1342. doi:10.1016/S0301-9322(98)00035-4

    Article  MATH  Google Scholar 

  20. Wojtan L (2004) Experimental and analytical investigation of void fraction and heat transfer during evaporation in horizontal tubes. These no 2978, Ecole Polytechnique Federale de Lausanne

  21. Shedd TA (2010) Void fraction and pressure drop measurement for refrigerant R410A flows in small diameter tubes. Report, The University of Wisconsin, Madison

  22. Cioncolini A, Thome JR (2012) Void fraction prediction in annular two-phase flow. Int J Multiphas Flow 43:72–84. doi:10.1016/j.ijmultiphaseflow.2012.03.003

    Article  Google Scholar 

  23. Beattie DRH, Sugawara S (1986) Steam-water void fraction for vertical upflow in a 73.9 mm pipe. Int J Multiphas Flow 12(4):641–653. doi:10.1016/0301-9322(86)90065-0

    Article  Google Scholar 

  24. Brennen CE (2005) Fundamentals of multiphase flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  25. Hill AV (1910) The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J Physiol 40(4):iv–vii

    Google Scholar 

  26. Munson BR, Okiishi TH, Huebsch WW, Rothmayer AP (2013) Fundamentals of fluid mechanics, 7th edn. Wiley, USA. ISBN 978-1-118-11613-5

    Google Scholar 

  27. Hashizume K (1983) Flow pattern, void fraction and pressure drop of refrigerant two-phase flow in a horizontal pipe—I. Experimental data. Int J Multiphas Flow 9(4):399–410. doi:10.1016/0301-9322(83)90096-4

    Article  Google Scholar 

  28. Wojtan L, Ursenbacher T, Thome JR (2005) Measurement of dynamic void fractions in stratified types of flow. Exp Therm Fluid Sci 29(3):383–392. doi:10.1016/j.expthermflusci.2004.05.017

    Article  Google Scholar 

  29. Portillo G, Shedd TA, Lehrer KH (2008) Void Fraction measurement in minichannels with in-situ calibration. In: International Refrigeration and Air Conditioning Conference. Paper 887. http://docs.lib.purdue.edu/iracc/887. Accessed 27 Aug 2015

  30. De Kerpel L, T’Joen C, Canière H, De Paepe M (2012) Calibration of a capacitive void fraction sensor for refrigerant flow in small diameter tubes. In: ECI 8th International Conference on Boiling and Condensation Heat Transfer, Lausanne, Switzerland, Paper o_s4_1451

  31. Canière H (2009) Flow pattern mapping of horizontal evaporating refrigerant flow based on capacitive void fraction measurements. Doctoral Thesis, Universiteit Gent, Faculteit Ingenieurswetenschappen, Belgium

  32. Yashar DA, Newell TA, Chato JC (1998) Experimental investigation of void fraction during horizontal flow in smaller diameter refrigeration applications. Air Conditioning and Refrigeration Center (ACRC TR-141). College of Engineering. University of Illinois at Urbana-Champaign

  33. Nguyen VT, Spedding PL (1977) Holdup in two-phase, gas-liquid flow—II: experimental results. Chem Eng Sci 32(9):1015–1021. doi:10.1016/0009-2509(77)80139-5

    Article  Google Scholar 

  34. Abdul-Majeed GH (1996) Liquid holdup in horizontal two-phase gas—liquid flow. J Petrol Sci Eng 15(2):271–280. doi:10.1016/0920-4105(95)00069-0

    Article  Google Scholar 

  35. França F, Lahey RT Jr (1992) The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int J Multiphas Flow 18(6):787–801. doi:10.1016/0301-9322(92)90059-P

    Article  MATH  Google Scholar 

  36. Milan M, Borhani N, Thome JR (2013) Adiabatic vertical downward air–water flow pattern map: influence of inlet device, flow development length and hysteresis effects. Int J Multiphas Flow 56:126–137. doi:10.1016/j.ijmultiphaseflow.2013.06.003

    Article  Google Scholar 

  37. Rouhani SZ (1966) Void measurements in the regions of sub-cooled and low-quality boiling. Part I. Low mass velocities (No. AE-238). Aktiebolaget Atomenergi, Stockholm (Sweden)

  38. Rouhani SZ (1966) Void measurements in the regions of sub-cooled and low-quality boiling. Part II. Higher mass velocities (No. AE-239). Aktiebolaget Atomenergi, Stockholm (Sweden)

  39. Rouhani SZ, Becker KM (1963) Measurements of void fractions for flow of boiling heavy water in a vertical round duct (No. AE-106). Aktiebolaget Atomenergi, Studsvik, Sweden

  40. Leung LKH, Groeneveld DC, Teyssedou A, Aubé F (2005) Pressure drops for steam and water flow in heated tubes. Nucl Eng Des 235(1):53–65. doi:10.1016/j.nucengdes.2004.08.020

    Article  Google Scholar 

  41. Turnage KG, Davis CE (1979) Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes. NASA STI/Recon Tech Rep N 80:13413

    Google Scholar 

  42. Elkow KJ (1995) Void fraction measurement and analysis at normal gravity and microgravity conditions. Doctoral Thesis, Department of Mechanical Engineering, University of Saskatchewan, Canada

  43. Elkow KJ, Rezkallah KS (1996) Void fraction measurements in gas-liquid flows using capacitance sensors. Meas Sci Technol 7(8):1153–1163. doi:10.1088/0957-0233/7/8/011

    Article  Google Scholar 

  44. Sujumnong M (1997) Heat transfer, pressure drop and void fraction in two-phase, two-component flow in a vertical tube. Doctoral Thesis, The University of Manitoba, Canada

  45. Kaji R, Azzopardi BJ (2010) The effect of pipe diameter on the structure of gas/liquid flow in vertical pipes. Int J Multiphas Flow 36(4):303–313. doi:10.1016/j.ijmultiphaseflow.2009.11.010

    Article  Google Scholar 

  46. Ueda T (1967) On upward flow of gas-liquid mixtures in vertical tubes. 1st report, experiment and analysis of the flow state. Bull JSME 10(42):989–999. doi:10.1299/jsme1958.10.989

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge a research Grant and scholarships awarded to the first author by FAPESP (São Paulo Research Foundation, Brazil) under Contract Numbers 2010/20670-2, 2014/06902-9, 2015/00854-5 and 2011/50176-2. The second author is also grateful to CNPq (National Council for Scientific and Technological Development, Brazil) for a Grant under Contract Number 303852/2013-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Toshio Kanizawa.

Additional information

Technical Editor: Jose A. dos Reis Parise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanizawa, F.T., Ribatski, G. Void fraction predictive method based on the minimum kinetic energy. J Braz. Soc. Mech. Sci. Eng. 38, 209–225 (2016). https://doi.org/10.1007/s40430-015-0446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0446-x

Keywords

Navigation