Skip to main content
Log in

Enhancement of low-frequency sound insulation using piezoelectric resonators

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, piezoelectric patches and electrical circuits are associated to attenuate vibration of a flat panel. The resulting electrical network is equivalent to a resistor–inductor–capacitor circuit performing as a tuned vibration absorber, denoted by piezoelectric resonator. The choice of design parameters, such as the correct placement for piezoelectric patches and the optimal electrical circuit elements, is assisted by finite element simulation and theoretical analysis. Measurements of sound transmission loss and modal analysis are conducted to demonstrate the structural vibration control and its resulting sound insulation performance. It is shown that, despite its reduced mass, the piezoelectric resonator can be more effective than conventional damping in low frequencies, which enables the overall sound insulation system to perform, with lower mass, in a wider frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

C :

Generic capacitance (F)

[C E]:

Elasticity matrix (Pa)

[e]:

Piezoelectric constants matrix (C/m2)

f :

Generic frequency (Hz)

k 31 :

Electromechanical coupling coefficient

K 31 :

Generalized electromechanical coupling

L :

Generic inductance (H)

R :

Generic resistance (Ω)

r opt :

Optimal circuit damping

{D}:

Electrical displacement vector (C/m2)

{S}:

Strain tensor (m/m)

{E}:

Electric field vector (N/C)

T k :

Kinetic energy (J)

P :

Potential energy (J)

W :

Generic work (J)

Q :

Surface charge (A/m2)

{u}:

Displacement vector (m)

[K]:

Generic stiffness matrix

[M]:

Generic mass matrix

[L u ]:

Differential operator

[G]:

Elasticity constants matrix

[N]:

Generic interpolation function

[B]:

Generic interpolation function derivative

ω e :

Electric resonance (rad/s)

ω :

Generic resonance (rad/s)

η :

Damping loss factor

{ϕ}:

Electric potential vector (V)

[ε S]:

Permittivity matrix (F/m)

ρ :

Mass density (kg/m3)

∇:

Gradient operator

{σ}:

Stress tensor (N/m2)

s :

Refers to base structure

s:

Refers to short circuit

o:

Refers to open circuit

p :

Refers to piezoelectric material

u :

Refers to displacement

ϕ :

Refers to electric potential

ϕϕ :

Indicates piezoelectric matrix

:

Indicates electromechanical coupling

uu :

Indicates piezoelectric and structural association

E :

Measured at constant electric field

e :

Refers to finite element

S :

Measured at constant strain

T :

Transposed matrix

References

  1. Allik H, Hughes TJR (1970) Finite element method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157

    Article  Google Scholar 

  2. ASTM E2249-02 (2008) Standard test method for laboratory measurement of airborne transmission loss of building partitions and elements using sound intensity. Technical report, American Society for Testing and Materials, West Conshohocken, PA, USA. ASTM vol 4, Section 4-All parts. ICS Code 91.120.20 (Acoustics in buildings. Sound insulation). doi:10.1520/E1042-02R08

  3. Avdiaj S, Setina J, Syla N (2009) Modeling of the piezoelectric effect using the finite-element method (FEM). ISSN 1580-2949

  4. Barboni R, Mannini A, Fantini E, Gaudenzi P (2000) Optimal placement of PZT actuators for the control of beam dynamics. Smart Mater Struct 9:110–120

    Article  Google Scholar 

  5. Clark RL, Sauders WR, Gibbs GP (1998) Adaptive structures: dynamics and control. Wiley, Chichester

    Google Scholar 

  6. Emery J (1997) Piezoelectricity. Available online at http://stem2.org/je/piezoelc.pdf. Accessed 14 May 2012

  7. Granier JJ, Hundhausen RJ, Gaytan GE (2002) Passive modal damping with piezoelectric shunts. In: SPIE proceedings series, IMAC-Conference on Structural Dynamics, vol 4753. Los Angeles, CA, p 7

  8. Hagood NW, von Flotow A (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146(2):243–268

    Article  Google Scholar 

  9. Hald J (2009) Basic theory and properties of statistically optimized near-field acoustical holography. J Acoust Soc Am 125(4):2105–2120

    Article  Google Scholar 

  10. Inman DJ, Park G, Adachi K (2002) Passive damping augmentation using macro-fiber composite actuators. In: Proceedings of ASME international mechanical engineering congress and exposition IMECEf02, New Orleans, LA, USA, 17–22 November

  11. Jeric KM (1999) An experimental evaluation of the application of smart damping materials for reducing structural noise and vibrations. Master’s thesis, Virginia Tech, Blacksburg, VA

  12. Kim JY, Singh R (2001) Effect of viscoelastic patch damping on casing cover dynamics. SAE trans 110:1695–1703

    Google Scholar 

  13. Lopes V Jr, Steffen V Jr, Inman DJ (2003) Optimal placement of piezoelectric sensor/actuator for smart structures vibration control. In: Dynamical systems and control. Taylor & Francis Books Ltd, London

  14. Moheimani SOR, Behrens S (2004) Multimode piezoelectric shunt damping with highly resonant impedance. IEEE Trans Control Syst Technol 12(3):484–491

    Article  Google Scholar 

  15. Nguyen CH, Pietrzko SJ (2006) FE analysis of a PZT-actuated adaptive beam with vibration damping using a parallel R–L shunt circuit. Finite Elem Anal Des 42:1231–1239

    Article  Google Scholar 

  16. Seba B, Ni J, Lohmann B (2006) Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis. Smart Mater Struct 15:509–517

    Article  Google Scholar 

  17. Sungwon H, Chang F-K (2010) Adhesive interface layer effects in PZT-induced lamb wave propagation. Smart Mater Struct 19:025006

    Article  Google Scholar 

  18. Viana FAC, Steffen V Jr (2006) Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits. J Braz Soc Mech Sci Eng XXVIII(3):293–310

    Article  Google Scholar 

  19. Williams EG (1999) Fourier acoustics. Academic press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Téo L. Rocha.

Additional information

Technical Editor: Marcelo Savi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, T.L., Calçada, M. & Silva, Y.A.R. Enhancement of low-frequency sound insulation using piezoelectric resonators. J Braz. Soc. Mech. Sci. Eng. 35, 357–367 (2013). https://doi.org/10.1007/s40430-013-0034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0034-x

Keywords

Navigation