Skip to main content
Log in

Variation in the tracheary elements in species of Coryphantha (Cacteae-Cactoideae) with contrasting morphology: the bottleneck model

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

A comparative analysis was conducted of the tracheary elements of the stem and tubercle of six species of Coryphantha. The aims of the study were to identify the micromorphological characters and to determine whether the bottleneck model applied based on the similarity of the diameters of the tracheary elements in the stem and in the tubercle. We collected individuals of C. bumamma, C. clavata, C. erecta, C. glanduligera, C. ottonis, and C. radians, which were species with contrasting morphologies of the stems and tubercles. Sections and macerations were used to prepare the vascular cylinder and the cortical vascular bundles of the tubercle for observation. Our results showed that wide-band tracheids and vessel elements with annular or helical secondary walls predominated in wood. The cortical vascular bundles had primary or both primary and secondary growths, and the tracheary elements had diameters of 10–27 µm, with the pattern and size of the wide-band tracheids more heterogeneous than those of wood. These wider and shorter wide-band tracheids are interpreted as analogous to the dilated tracheids in the veinlets of eudicotyledons. The length and diameter of both tracheary elements (vessel elements and wide-band tracheids) in the tubercles were shorter and narrower than those of the tracheary elements in the vascular cylinder of the stem (P < 0.05). The diameters of the vessel elements in the tubercles were two- or threefold wider than those of the vessel elements in the cortical vascular bundles. Therefore, the results for the species of Coryphantha are consistent with the bottleneck model observed for the diameters of vessel elements for the non-succulent stems of other eudicots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2–9
Figs. 10–27
Figs. 28–36

Similar content being viewed by others

References

  • Arruda E, Melo-de-Pinna GF (2010) Wide-band tracheids (WBTs) of photosynthetic and non-photosynthetic stems in species of Cactaceae. J Torrey Bot Soc 137:16–29

    Article  Google Scholar 

  • Boke NH (1944) Histogenesis of the leaf and areole in Opuntia cylindrica. Am J Bot 31:299–316

    Article  Google Scholar 

  • Bravo-Hollis H (1978) Las cactáceas de México, vol I. Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Bravo-Hollis H, Sanchéz-Mejorada H (1991) Las cactáceas de México, vol II. Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. Am J Bot 64:887–896

    Article  Google Scholar 

  • Carlquist S (1988) Comparative wood anatomy: systematic, ecological and evolutionary aspects of dicotyledon wood. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Coomes D, Heathcote S, Godfrey E, Shepherd J, Sack L (2008) Scaling of xylem vessels and veins within the leaves of oak species. Biol Lett 4:302–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Dicht R, Lüthy A (2003) Coryphantha: cacti of México and southern USA. Springer-Verlag, Berlin

    Google Scholar 

  • Garrett TY, Huynh CV, North GB (2010) Root contraction helps protect the “living rock” cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. Am J Bot 97:1951–1960. doi:10.3732/ajb.1000286

    Article  PubMed  Google Scholar 

  • Gibson A (1973) Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). Biotropica 5:29–65

    Article  Google Scholar 

  • Grego-Valencia D, Terrazas T, Lara-Martínez R, Jiménez-García LF (2015) La membrana de la punteadura en dos especies de Cacteae, Cactaceae. Bot Sci 93:209–219. doi:10.17129/botsci.145

    Article  Google Scholar 

  • Hernandes-Lopes J, Melo-de-Pinna GF (2008) Análise morfométrica dos elementos traqueais em quatro espécies de Portulaca (Portulacaceae). Acta Bot Bras 22:607–613

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. Mc.Graw-Hill, New York

    Google Scholar 

  • Landrum JV (2006) Wide-band tracheids in genera of Portulacaceae: novel, non-xylary tracheids possibly evolved as an adaptation to water stress. J Plant Res 119:497–504. doi:10.1007/s10265-006-0013-8

    Article  PubMed  Google Scholar 

  • Lersten NR, Curtis JD (1996) Survey of leaf anatomy, especially secretory structures, of tribe Caesalpinioideae (Leguminosae, Caesalpinioideae). Plant Syst Evol 22:189–198. doi:10.1007/BF00984746

    Google Scholar 

  • Loza-Cornejo S, Terrazas T (1996) Anatomía del tallo y de la raíz de dos especies de Wilcoxia Britton y Rose (Cactaceae) del noreste de México. Bol Soc Bot Méx 59:13–23

    Google Scholar 

  • Luckow M (2002) Anatomical features of the leaves in the Dichrostachys group (Leguminosae: Mimosoideae) and their utility for phylogenetic studies. Syst Bot 27:29–40

    Google Scholar 

  • Mauseth JD (1993) Water-storing and cavitation-preventing adaptations in wood of cacti. Ann Bot-London 72:81–89. doi:10.1006/anbo.1993.1083

    Article  Google Scholar 

  • Mauseth JD (2006) Structure-function relationships in highly modified shoots of Cactaceae. Ann Bot-London 98:901–926. doi:10.1093/aob/mcl133

    Article  Google Scholar 

  • Mauseth JD, Plemons-Rodriguez B (1998) Evolution of extreme xeromorphic characters in wood: a study of nine evolutionary lines y Cactaceae. Am J Bot 85:209–218

    Article  Google Scholar 

  • Mauseth JD, Sajeva M (1992) Cortical bundles in the persistent photosynthetic stems of cacti. Ann Bot-London 70:317–324

    Google Scholar 

  • Mauseth JD, Uozumi Y, Plemons B, Landrum J (1995) Structural and systematic study of an unusual tracheid type in cacti. J Plant Res 108:517–526. doi:10.1007/BF02344242

    Article  Google Scholar 

  • Nobel PS (1981) Influence of freezing temperatures on a cactus, Coryphantha vivipara. Oecologia 48:191–198

    Article  Google Scholar 

  • Ogburn RM, Edwards EJ (2013) Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants. Curr Biol 23:722–726. doi:10.1016/j.cub.2013.03.029

    Article  CAS  PubMed  Google Scholar 

  • Price CA, Enquist BJ (2006) Scaling of mass and morphology in plants with minimal branching: an extension of the WBE model. Funct Ecol 20:11–20. doi:10.1111/j.1365-2435.2006.01078.x

    Article  Google Scholar 

  • Rao TA, Das S (1979) Typology of foliar tracheoids in angiosperms. Proc Indian Acad Sci 88:331–345

    Google Scholar 

  • Reyes-Rivera J (2010) Ontogenia de la madera en tallos contrastantes de la tribu Cacteae. Tesis de Maestría Posgrado en Ciencias Biológicas. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Reyes-Rivera J, Canché-Escamilla G, Soto-Hernández M, Terrazas T (2015) Wood chemical composition in species of Cactaceae: The relationship between lignification and stem morphology. PloS One PONE-D-14-38958R1. doi: 10.1371/journal.pone.0123919

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Streeter C, Holbrook NM (2004) Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol 134:1824–1833. doi:10.1104/pp.103.031203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajeva M, Mauseth JD (1991) Leaf-like structure in the photosynthetic, succulent stems of cacti. Ann Bot-London 68:405–411

    Google Scholar 

  • SAS Institute (2008) SAS® 9.1 users guide statistics. SAS Institute Inc., Cary

    Google Scholar 

  • Schulte PJ, Smith JAC, Nobel PS (1989) Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent. Plant Cell Environ 12:831–842. doi:10.1111/j.1365-3040.1989.tb01646.x

    Article  Google Scholar 

  • Terrazas T, Mauseth J (2002) Shoot anatomy and morphology. In: Nobel P (ed) Cacti biology and uses. University of California Press, Berkeley, pp 23–40

    Google Scholar 

  • Tucker SC (1964) The terminal idioblasts in Magnoliaceous leaves. Am J Bot 51:1051–1062

    Article  Google Scholar 

  • Vázquez-Sánchez M, Terrazas T (2011) Stem and wood allometric relationships in Cacteae (Cactaceae). Trees-Struct Funct 25:755–767. doi:10.1007/s00468-011-0553-y

    Article  Google Scholar 

  • Vázquez-Sánchez M, Terrazas T, Arias S (2012) El hábito y forma de crecimiento en la tribu Cacteae (Cactaceae, Cactoideae). Bot Sci 90:97–108

    Article  Google Scholar 

  • Vázquez-Sánchez M, Terrazas T, Arias S, Ochoterena H (2013) Molecular phylogeny, origin, and taxonomic implications of tribe Cacteae (Cactaceae). Syst Biodivers 11:103–116. doi:10.1080/14772000.2013.775191

    Article  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer-Verlag, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The financial support for this research is appreciated and was provided through a grant from the Programa de Apoyo a Proyectos de Investigación de Innovación Tecnológica, DGAPA, Universidad Nacional Autónoma de México (IN209012, IN210115) to TT. Thanks to Salvador Arias for helping in the field work. Art work by Julio César Montero Rojas and Diana Martínez is also appreciated. We appreciate the comments of the reviewers that allow us to clarify some ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Terrazas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terrazas, T., Escamilla-Molina, R. & Vázquez-Sánchez, M. Variation in the tracheary elements in species of Coryphantha (Cacteae-Cactoideae) with contrasting morphology: the bottleneck model. Braz. J. Bot 39, 669–678 (2016). https://doi.org/10.1007/s40415-016-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0249-z

Keywords

Navigation