Skip to main content
Log in

Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices (i.e., mulching mode treatments: flat cultivation with non-mulching, flat cultivation with straw mulching, plastic-covered ridge with bare furrow and plastic-covered ridge with straw-covered furrow; and planting density treatments: low planting density of 45,000 plants/hm2, medium planting density of 67,500 plants/hm2 and high planting density of 90,000 plants/hm2) on rainfall partitioning by dryland maize canopy, especially the resulted net rainfall input beneath the maize canopy, we measured the gross rainfall, throughfall and stemflow at different growth stages of dryland maize in 2015 and 2016 on the Loess Plateau of China. The canopy interception loss was estimated by the water balance method. Soil water storage, leaf area index, grain yield (as well as it components) and water use efficiency of dryland maize were measured or calculated. Results showed that the cumulative throughfall, cumulative stemflow and cumulative canopy interception loss during the whole growing season accounted for 42.3%–77.5%, 15.1%–36.3% and 7.4%–21.4% of the total gross rainfall under different treatments, respectively. Soil mulching could promote the growth and development of dryland maize and enhance the capability of stemflow production and canopy interception loss, thereby increasing the relative stemflow and relative canopy interception loss and reducing the relative throughfall. The relative stemflow and relative canopy interception loss generally increased with increasing planting density, while the relative throughfall decreased with increasing planting density. During the two experimental years, mulching mode had no significant influence on net rainfall due to the compensation between throughfall and stemflow, whereas planting density significantly affected net rainfall. The highest grain yield and water use efficiency of dryland maize were obtained under the combination of medium planting density of 67,500 plants/hm2 and mulching mode of plastic-covered ridge with straw-covered furrow. Soil mulching can reduce soil evaporation and retain more soil water for dryland maize without reducing the net rainfall input beneath the maize canopy, which may alleviate the contradiction between high soil water consumption and insufficient rainfall input of the soil. In conclusion, the application of medium planting density (67,500 plants/hm2) under plastic-covered ridge with bare furrow is recommended for increasing dryland maize production on the Loess Plateau of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuzar M R, Sadozai G U, Baloch M S, et al. 2011. Effect of plant population densities on yield of maize. Journal of Animal & Plant Sciences, 21(4): 692–695.

    Google Scholar 

  • Bu L D, Liu J L, Zhu L, et al. 2013. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management, 123: 71–78.

    Article  Google Scholar 

  • Cai T Y, Jia Z K, Meng L, et al. 2011. Effects of different rates of straw mulch on soil moisture and yield of spring maize in Weibei Highland area of China. Transactions of the Chinese Society of Agricultural Engineering, 27(3): 43–48. (in Chinese)

    Google Scholar 

  • Carlyle-Moses D E. 2004. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community. Journal of Arid Environments, 58(2): 181–202.

    Article  Google Scholar 

  • Chen S Y, Zhang X Y, Hu C S, et al. 2002. Effect of mulching on growth and soil water dynamics of summer corn field. Agricultural Research in the Arid Areas, 20(4): 55–57. (in Chinese)

    Google Scholar 

  • Deng X P, Shan L, Zhang H P, et al. 2006. Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural Water Management, 80(1–3): 23–40.

    Article  Google Scholar 

  • Dunkerley D. 2000. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes, 14(4): 669–678.

    Article  Google Scholar 

  • Echarte L, Luque S, Andrade F H, et al. 2000. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Research, 68(1): 1–8.

    Article  Google Scholar 

  • Fan J L, Oestergaard K T, Guyot A, et al. 2014. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia. Journal of hydrology, 515: 156–165.

    Article  Google Scholar 

  • Fan J L, Oestergaard K T, Guyot A, et al. 2015. Spatial variability of throughfall and stemflow in an exotic pine plantation of subtropical coastal Australia. Hydrological Processes, 29(5): 793–804.

    Article  Google Scholar 

  • Fan J L, Wu L F, Zhang F C, et al. 2016. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. Journal of Hydrology, 542: 923–937.

    Article  Google Scholar 

  • Fan J L, Chen B Q, Wu L F, et al. 2018a. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy, 144: 903–914.

    Article  Google Scholar 

  • Fan J L, Wang X K, Wu L F, et al. 2018b. New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: A case study in South China. Energy Conversion and Management, 156: 618–625.

    Article  Google Scholar 

  • Fathizadeh O, Attarod P, Keim R F, et al. 2014. Spatial heterogeneity and temporal stability of throughfall under individual Quercus brantii trees. Hydrological Processes, 28(3): 1124–1136.

    Article  Google Scholar 

  • Ghimire C P, Bruijnzeel L A, Lubczynski M W, et al. 2012. Rainfall interception by natural and planted forests in the Middle Mountains of Central Nepal. Journal of Hydrology, 475: 270–280.

    Article  Google Scholar 

  • Han X, Wang L, Wang Y P. 2014. Canopy interception of summer corn and its influencing factors under natural rainfall. Scientia Agricultural Sinica, 47(8): 1541–1549. (in Chinese)

    Google Scholar 

  • Ji J M, Cai H J, He J Q, et al. 2014. Performance evaluation of CERES-Wheat model in Guanzhong Plain of Northwest China. Agricultural Water Management, 144: 1–10.

    Article  Google Scholar 

  • Jia Q M, Sun L F, Mou H Y, et al. 2018. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agricultural Water Management, 201: 287–298.

    Article  Google Scholar 

  • Kang S Z, Shi W J, Zhang J H, et al. 2000. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 67(3): 207–214.

    Article  Google Scholar 

  • Lamm F R, Manges H L. 2000. Partitioning of sprinkler irrigation water by a corn canopy. Transactions of the ASAE, 43(4): 909–918.

    Article  Google Scholar 

  • Levia D F, Frost E E. 2003. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology, 274(1–4): 1–29.

    Article  Google Scholar 

  • Li R, Hou X Q, Jia Z K, et al. 2013. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agricultural Water Management, 116: 101–109.

    Article  Google Scholar 

  • Li S X, Wang Z H, Li S Q, et al. 2013. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agricultural Water Management, 116: 39–49.

    Article  Google Scholar 

  • Li Y, Cai T J, Man X L, et al. 2015. Canopy interception loss in a Pinus sylvestris var. mongolica forest of Northeast China. Journal of Arid Land, 7(6): 831–840.

    Article  Google Scholar 

  • Lin W, Liu W Z, Xue Q W. 2016. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau. Scientific Report, 6: 38995.

    Article  Google Scholar 

  • Liu H J, Kang Y H, Wang Q G. 2007. Effect of crop canopy on soil water redistribution under sprinkler irrigation: a review. Agricultural Research in the Arid Areas, 25(2): 137–142. (in Chinese)

    Google Scholar 

  • Liu H J, Zhang R H, Zhang L W, et al. 2015. Stemflow of water on maize and its influencing factors. Agricultural Water Management, 158: 35–41.

    Article  Google Scholar 

  • Liu Q F, Chen Y, Liu Y, et al. 2016. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China. Soil and Tillage Research, 157: 1–10.

    Article  Google Scholar 

  • Liu Y, Yang S J, Li S Q, et al. 2010. Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency. Agricultural and Forest Meteorology, 150(4): 606–613.

    Article  Google Scholar 

  • Liu Z D, Liu Z G, Zhang J Y. 2015. Rainfall interception process and its simulation of summer maize. Journal of Irrigation and Drainage, 34(7): 13–17. (in Chinese)

    Google Scholar 

  • Ma B, Li C D, Ma F, et al. 2016. Influences of rainfall intensity and leaf area on corn stemflow: Development of a model. CLEAN-Soil, Air, Water, 44(8): 922–929.

    Article  Google Scholar 

  • Norman J M, Campbell G. 1983. Application of plant environment model to problems in irrigation. Advances in Irrigation, 2: 155–188.

    Article  Google Scholar 

  • Pabin J, Lipiec J, Wlodek S, et al. 2003. Effect of different tillage systems and straw management on some physical properties of soil and on the yield of winter rye in monoculture. International Agrophysics, 17: 175–181.

    Google Scholar 

  • Paltineanu I C, Starr J L. 2000. Preferential water flow through corn canopy and soil water dynamics across rows. Soil Science Society of America Journal, 64(1): 44–54.

    Article  Google Scholar 

  • Qi W Z, Liu H H, Liu P, et al. 2012. Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. European Journal of Agronomy, 38: 54–63.

    Article  Google Scholar 

  • Quinn N W, Laflen J M. 1983. Characteristics of raindrop throughfall under corn canopy. Transactions of the ASAE, 26(5): 1445–1450.

    Article  Google Scholar 

  • Ren X L, Jia Z C, Chen X L. 2008. Rainfall concentration for increasing corn production under semiarid climate. Agricultural Water Management, 95(12): 1293–1302.

    Article  Google Scholar 

  • Sangoi L, Almeida M L D, Silva P R F D, et al. 2002. Morpho-physiological bases for greater tolerance of modern maize hybrids to high plant densities. Bragantia, 61(2): 101–110.

    Article  Google Scholar 

  • Shi Z J, Wang Y H, Xu L H, et al. 2010. Fraction of incident rainfall within the canopy of a pure stand of Pinus armandii with revised Gash model in the Liupan Mountains of China. Journal of Hydrology, 385(1–4): 44–50.

    Google Scholar 

  • Steiner J L, Kanemasu E T, Clark R N. 1983. Spray losses and partitioning of water under a center pivot sprinkler system. Transactions of the ASAE, 26(4): 1128–1134.

    Article  Google Scholar 

  • Swaffer B A, Holland K L, Doody T M, et al. 2014. Rainfall partitioning, tree form and measurement scale: a comparison of two co-occurring, morphologically distinct tree species in a semi-arid environment. Ecohydrology, 7(5): 1331–1344.

    Google Scholar 

  • Tanaka N, Levia D, Igarashi Y, et al. 2015. Throughfall under a teak plantation in Thailand: a multifactorial analysis on the effects of canopy phenology and meteorological conditions. International Journal of Biometeorology, 59(9): 1145–1156.

    Article  Google Scholar 

  • Tokatlidis I S, Koutroubas S D. 2004. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 88(2–3): 103–114.

    Article  Google Scholar 

  • Tokatlidis I S, Has V, Melidis V, et al. 2011. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rainfed and irrigated conditions. Field Crops Research, 120(3): 345–351.

    Article  Google Scholar 

  • Wang D, Li J S, Rao M J. 2006. Sprinkler water distributions as affected by corn canopy. Transactions of the Chinese Society of Agricultural Engineering, 22(7): 43–47. (in Chinese)

    Google Scholar 

  • Wang S X, Wang Z J, Zuo Z, et al. 2004. Effects of difference mulching on the soil environment and maize yield in rain fed land. Journal of Arid Land Resources & Environment, 18(9): 134–137. (in Chinese)

    Google Scholar 

  • Wang T C, Wei L, Wang H Z, et al. 2011. Responses of rainwater conservation, precipitation-use efficiency and grain yield of summer maize to a furrow-planting and straw-mulching system in northern China. Field Crops Research, 124(2): 223–230.

    Article  Google Scholar 

  • Yin W, Chen G P, Feng F X, et al. 2017. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Research, 204: 42–51.

    Article  Google Scholar 

  • Zhang Y F, Wang X P, Hu R, et al. 2015. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. Journal of Hydrology, 527: 1084–1095.

    Article  Google Scholar 

  • Zheng J, Fan J L, Zhang F C, et al. 2018. Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China. Agricultural Water Management, 195: 25–36.

    Article  Google Scholar 

  • Zheng Z C, Li T X, Zhang X Z, et al. 2012. Differentiation characteristics and influencing factors of rainfall interception in maize plants. Journal of Soil and Water Conservation, 26(4): 208–211, 215. (in Chinese)

    Google Scholar 

  • Zhou J B, Wang C Y, Zhang H, et al. 2011. Effect of water saving management practices and nitrogen fertilizer rate on crop yield and water use efficiency in a winter wheat-summer maize cropping system. Field Crops Research, 122(2): 157–163.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51509208), the National Key Research and Development Program of China (2016YFC0400201) and the Scientific Startup Foundation for Doctors of Northwest A&F University (Z109021613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Fan, J., Zhang, F. et al. Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China. J. Arid Land 10, 794–808 (2018). https://doi.org/10.1007/s40333-018-0122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-018-0122-y

Keywords

Navigation